Answer: Number of children = 168
Number of adults = 120
Step-by-step explanation:
Let x = Number of children and y = Number of adults
As per given,
x+y=288 (i)
2.25x+6.80y =1194 (ii)
Multiply 2.25 on both sides in (i)
2.25x+2.25y= 648 (iii)
Eliminate (iii) from (ii)
4.55y=546
![\Rightarrow y=\dfrac{546}{4.55}\\\\\Rightarrow\ y=120](https://tex.z-dn.net/?f=%5CRightarrow%20y%3D%5Cdfrac%7B546%7D%7B4.55%7D%5C%5C%5C%5C%5CRightarrow%5C%20y%3D120)
Put y= 120 in (i)
x+120=288
⇒ x=288-120
⇒ x= 168
Hence, Number of children = 168
Number of adults = 120
Answer:
OPTION C: The ratio is a constant.
OPTION E: The ratio is equal to b.
Step-by-step explanation:
Given: ![$ f(x) = a.b^x $](https://tex.z-dn.net/?f=%24%20f%28x%29%20%3D%20a.b%5Ex%20%24)
The ratio of f(x + 1) and f(x) = ![$ \frac{f(x + 1)}{f(x)} = \frac{a.b^{x + 1}}{a.b^x} $](https://tex.z-dn.net/?f=%24%20%5Cfrac%7Bf%28x%20%2B%201%29%7D%7Bf%28x%29%7D%20%3D%20%5Cfrac%7Ba.b%5E%7Bx%20%2B%201%7D%7D%7Ba.b%5Ex%7D%20%24)
Since, ![$ a^{x + 1} = a^x. a $](https://tex.z-dn.net/?f=%24%20a%5E%7Bx%20%2B%201%7D%20%3D%20a%5Ex.%20a%20%24)
![$ \implies \frac{f(x + 1)}{f(x)} = \frac{a.b^x.b}{a.b^x} $](https://tex.z-dn.net/?f=%24%20%5Cimplies%20%5Cfrac%7Bf%28x%20%2B%201%29%7D%7Bf%28x%29%7D%20%3D%20%5Cfrac%7Ba.b%5Ex.b%7D%7Ba.b%5Ex%7D%20%24)
Cancelling out
we get:
![$ \frac{f(x + 1)}{f(x)} = b $](https://tex.z-dn.net/?f=%24%20%5Cfrac%7Bf%28x%20%2B%201%29%7D%7Bf%28x%29%7D%20%3D%20b%20%24)
This shows that the ratio is always a constant and that constant is equal to b.
Answer:
36
Step-by-step explanation:
Using the angle addition postulate
angle 1+angle 2+angle 3=180
Angle 2 is 90 degrees,
Angle 1 is 2x degrees
Angle 3 is 3x degrees
Plug this into equation
![2x + 90 + 3x = 180](https://tex.z-dn.net/?f=2x%20%2B%2090%20%2B%20%203x%20%3D%20180)
![5x + 90 = 180](https://tex.z-dn.net/?f=5x%20%2B%2090%20%3D%20180)
![5x = 90](https://tex.z-dn.net/?f=5x%20%3D%2090)
![x = 18](https://tex.z-dn.net/?f=x%20%3D%2018)
Plug 18 into 2x
![2(18) = 36](https://tex.z-dn.net/?f=2%2818%29%20%3D%2036)