Answer:
b. primitive cubic < body-centered cubic < face-centered cubic
Explanation:
The coordination number is defined as <em>the number of atoms (or ions) surrounding an atom (or ion) in a crystal lattice</em>. Its value gives us a measure of how tightly the spheres are packed together. The larger the coordination number, the closer the spheres are to each other.
- In the <u>primitive cubic</u>, each sphere is in contact with 6 spheres, so its <u>coordination number is 6</u>.
- In the <u>body-centered cubic</u>, each sphere is in contact with 8 spheres, so its <u>coordination number is 12</u>.
- In the <u>face-centered cubic</u>, each sphere is in contact with 12 spheres, so its <u>coordination number is 12</u>.
Therefore, the increasing order in density is the primitive cubic first, then the body-centered cubic, and finally the face-centered cubic.
Gravity depends on inertia
Answer:
The resonance forms of O3 are attached as an image.
Explanation:
A compound with different contributing structures comes together and forms a resonating or intermediate structure that best describes the properties of that compound.
The given compound is ozone, having the chemical formula
O3 = 6 electrons * 3 = 18 electrons
O → prefers to have a complete their octet
The bonding electrons and lone pair electrons are radical electrons that are present on the oxygen atoms tend to delocalize and results in various resonating forms of O3.
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Question:
What is the total combined mass of carbon dioxide and water that is produced?
Answer:
<u><em>109 kg</em></u>
Explanation:
When 23 kg of gasoline burns by consuming 86 kg oxygen, they produce carbon dioxide and water. To find the total combined mass of carbon dioxide and water, we will use mass conversation law.
According to mass conversation law, the mass of the product is equal to the mass of reagent.
Mass of reagent = Mass of product
In this reaction,
Gasoline + O2 → CO2 + H2O
23 kg + 86 kg → ?
23 kg + 86 kg = 109 kg
Combined mass of carbon dioxide and water will be 109 kg.