In terms of a deeper scientific reason, I am not sure, but the basic reason is quite simple. "Mud" tends to look like a mix between a solid, dirt, and a liquid, water or some other liquid. Since it is, in fact, a cross between a solid and a liquid, it has properties of both. It has certain physical and visual properties that only a solid would have, such as texture and opaqueness, but it also has physical properties of a liquid. Since it leans more towards the liquid side than the solid side, we say mud "flows" rather than saying that it "rolls" or "bounces".
In all atoms, the number of protons and the number of electrons is always the same. The number of neutrons is very roughly the same as the number of protons, but sometimes it's rather more. The number of protons in an atom is called the atomic number and it tells you what type of atom you have.
Which eclipse was modeled when the large ball was between the small ball and the light?
The model is a "Lunar Eclipse" (If it was talking about the earth, then yes, it is a lunar eclipse).
<u> </u>
Which eclipse was modeled when the small ball was between the large ball and the light?
The model is a "Solar Eclipse".
<u> </u>
What does the large ball represent?
The earth.
<u> </u>
What does the small ball represent?
The moon.
<u> </u>
What does the light source represent?
The sun.
Hope this helps!~ <3
(I can't draw so sorry.)
<u />
Answer:
All the elements in one group have the same number of valence electrons. ... Since elements in a group have the same number of valence electrons, they behave similarly in chemistry. An example would be the alkali metals (excepting hydrogen. Hydrogen is in this group only because it has one valence electron.
Explanation:
Answer:
The energy of the photon is directly proportional to the frequency of the light emitting the photon.
Explanation:
Energy of the photon is given by expression:

E = Energy associated with the photon
= frequency of the light
h = Planck's constant =
c = speed of the light in vacuum = constant
=Wavelength of the photon

The energy of the photon is directly proportional to the frequency of the light emitting the photon.