1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
4 years ago
12

Any answers on this?

Mathematics
2 answers:
anygoal [31]4 years ago
6 0

Perimeter is the distance all around the triangle, so take the side lengths and add them up in an expression.

(2x) + (4x - 2) + (3x - 1)

Combine like terms.

9x - 3

Your answer is D) 9x - 3.

Dafna11 [192]4 years ago
4 0
9x^3 -3 is the answer
You might be interested in
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
The sum of seven and eight times a number is 159.what is the number ?
Westkost [7]
The answer to this question is 10.6

8 0
4 years ago
Please help me asap!! :)
uranmaximum [27]

The graph continues up off the graph ( indicated by the red arrows.)

This means the domain is all real numbers written as (-∞,∞).

The lowest part of the graph is on  Y=1 and the lines curve upwards, this makes the range [1,∞)



4 0
3 years ago
The table contains data on the cost of attending a play at 10 different theaters in the United States. Find the interquartile ra
Lostsunrise [7]
The answer is negative 1. You divide the data set into 2 parts. Find the median of each and subtract the left side from the right
5 0
3 years ago
(50 points)<br><br><br><br> NEED ANSWER ASAPPPP:)
Ann [662]
The first step is to simplify the absolute value. 0.8 - 3/5 is equal to 0.8 - 0.6 which is 0.2. Now we do order of operations. Since the absolute value of 0.2 is 0.2, we can now do PEMDAS and solve. First is multiplication. 0.2 * 10 is 2. Now we have to do 5 - 3 which gives us our answer of 3, or C.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Twice a number a is less than 3
    15·1 answer
  • Use substitution to solve the system equation.<br><br><br> n=3m-11<br><br> 2m+3n=0
    12·1 answer
  • X-14+2x+20=90<br> Solve for X
    12·2 answers
  • What is the ratio of X to O?
    10·2 answers
  • In a capture-recapture study, a biologist tagged and released 330 deer. A month later she captured 40 deer, 10 of which had tags
    9·2 answers
  • Bottles of water are on sale!
    6·1 answer
  • (a) A marketing executive visited 3276 companies within a particular period. If she
    12·1 answer
  • Alex wants to get an apartment which costs $1000 per month. They want 1 month's rent
    7·1 answer
  • What is the percent change? Original cost is $15 and the new cost is $70.
    5·2 answers
  • Nickoy brought some shirts. He paid $12 for each shirt. This can be modeled by the expression 12x. What does x represent
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!