Find the first derivative of the function square root of x+1/4sin(2x)squared
1 answer:
I'm thinking you want something that looks like this
![\frac{dy}{dx}\sqrt{x+\frac{1}{4}sin^2(2x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%5Csqrt%7Bx%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29%7D)
or it could be like this
![\frac{dy}{dx}\sqrt{x}+\frac{1}{4}sin^2(2x)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%5Csqrt%7Bx%7D%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29)
use chain rule
dy/dx f(g(x))=f'(g(x))g'(x)
and √x=x^(1/2)
so
I'll do the first one first
![\frac{dy}{dx}\sqrt{x+\frac{1}{4}sin^2(2x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%5Csqrt%7Bx%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29%7D)
=
![\frac{dy}{dx}(x+\frac{1}{4}sin^2(2x))^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%28x%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
=
![\frac{1}{2(x+\frac{1}{4}sin^2(2x))^{\frac{1}{2}}}(1+sin(2x)cos(2x))](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%28x%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%281%2Bsin%282x%29cos%282x%29%29)
=
![\frac{1+sin(2x)cos(2x)}{2\sqrt{x+\frac{1}{4}sin^2(2x}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%2Bsin%282x%29cos%282x%29%7D%7B2%5Csqrt%7Bx%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%7D%7D)
the 2nd one is a bit simpler
![\frac{dy}{dx}\sqrt{x}+\frac{1}{4}sin^2(2x)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%5Csqrt%7Bx%7D%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29)
=
![\frac{dy}{dx}x^{\frac{1}{2}}+\frac{1}{4}sin^2(2x)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7Dx%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29)
=
![\frac{1}{2}x^{\frac{-1}{2}}+\frac{1}{4}sin^2(2x)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dx%5E%7B%5Cfrac%7B-1%7D%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29)
=
![\frac{1}{2x^{\frac{1}{2}}}+sin(2x)cos(2x)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%2Bsin%282x%29cos%282x%29)
=
![\frac{1}{2\sqrt{x}}+sin(2x)cos(2x)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%2Bsin%282x%29cos%282x%29)
in conclusion
![\frac{dy}{dx}\sqrt{x+\frac{1}{4}sin^2(2x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%5Csqrt%7Bx%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29%7D)
=
![\frac{1+sin(2x)cos(2x)}{2\sqrt{x+\frac{1}{4}sin^2(2x}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%2Bsin%282x%29cos%282x%29%7D%7B2%5Csqrt%7Bx%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%7D%7D)
and
![\frac{dy}{dx}\sqrt{x}+\frac{1}{4}sin^2(2x)](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%5Csqrt%7Bx%7D%2B%5Cfrac%7B1%7D%7B4%7Dsin%5E2%282x%29)
=
![\frac{1}{2\sqrt{x}}+sin(2x)cos(2x)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%2Bsin%282x%29cos%282x%29)
depends which one it was
You might be interested in
Answer:
it is 2 and this is myself so haha
Step-by-step explanation:
Answer:
i don't get the way you wrote it
Step-by-step explanation:
Answer:
them some expensive pencils
Answer:
i honestly dont know
Step-by-step explanation:
Answer:
$15.94 intrest
Step-by-step explanation: