Answer:
uhhhhhhhhh i think its 8 yep its 8
Step-by-step explanation:
Answer:
(C) 2√15
Step-by-step explanation:
Recognize that all the triangles are right triangles, so are similar to each other. In these similar triangles, the ratio of the short side to the long side is the same for all.
... CB/CA = CT/CB
... CB² = CA·CT = 10·6 = 60 . . . . . . . . . . multiply by CA·CB; substitute values
... CB = √60 = 2√15 . . . . . . . take the square root; simplify
_____
<em>Comment on this solution</em>
The altitude to the hypotenuse of a right triangle (CB in this case) divides the hypotenuse into lengths such that the altitude is their geometric mean. That is ...
... CB = √(AC·CT) . . . . as above
This is true for any right triangle — another fact of geometry to put in your list of geometry facts.
It’s J, 3 - X would equal 3 - (-2) which turns into 3+2 which equals 5 but 5 is not greater than 10
Answer:
51,750
Step-by-step explanation:
45,000x.03=1,350
1,350x5=6750
45,000+6750=51,750
Answer:
a reflection over the x-axis and then a 90 degree clockwise rotation about the origin
Step-by-step explanation:
Lets suppose triangle JKL has the vertices on the points as follows:
J: (-1,0)
K: (0,0)
L: (0,1)
This gives us a triangle in the second quadrant with the 90 degrees corner on the origin. It says that this is then transformed by performing a 90 degree clockwise rotation about the origin and then a reflection over the y-axis. If we rotate it 90 degrees clockwise we end up with:
J: (0,1) , K: (0,0), L: (1,0)
Then we reflect it across the y-axis and get:
J: (0,1), K:(0,0), L: (-1,0)
Now we go through each answer and look for the one that ends up in the second quadrant;
If we do a reflection over the y-axis and then a 90 degree clockwise rotation about the origin we end up in the fourth quadrant.
If we do a reflection over the x-axis and then a 90 degree counterclockwise rotation about the origin we also end up in the fourth quadrant.
If we do a reflection over the x-axis and then a reflection over the y-axis we also end up in the fourth quadrant.
The third answer is the only one that yields a transformation which leads back to the original position.