Answer:
And rounded up we have that n=99
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
Solution to the problem
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 99% of confidence, our significance level would be given by
and
. And the critical value would be given by:
The margin of error for the proportion interval is given by this formula:
(a)
And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
We assume the value for
since we don't have previous info. And replacing into equation (b) the values from part a we got:
And rounded up we have that n=99
Answer:

Step-by-step explanation:
The motion equations that describe the ball are, respectively:
![x = \left[\left(152\,\frac{ft}{s} \right)\cdot \cos 52^{\circ} \right] \cdot t](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Ccos%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t)
![y = 4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{ft}{s^{2}} \right) \cdot t^{2}](https://tex.z-dn.net/?f=y%20%3D%204.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bft%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D)
The time required for the ball to hit the ground is computed from the second equation. That is to say:
![4.5\,ft + \left[\left(152\,\frac{ft}{s} \right)\cdot \sin 52^{\circ} \right] \cdot t - \frac{1}{2}\cdot \left(32.174\,\frac{m}{s^{2}} \right) \cdot t^{2} = 0](https://tex.z-dn.net/?f=4.5%5C%2Cft%20%2B%20%5Cleft%5B%5Cleft%28152%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Csin%2052%5E%7B%5Ccirc%7D%20%5Cright%5D%20%5Ccdot%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%2832.174%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%20%5Ccdot%20t%5E%7B2%7D%20%3D%200)
Given that formula is a second-order polynomial, the roots of the equation are described below:
and 
Just the first root offers a realistic solution. Then,
.
The exponential function models the value v of the car after t years is V = 27000 * (0.93)^t
<h3>How to determine the exponential model?</h3>
The given parameters are:
Initial value, a = $27,000
Depreciation rate, r = 7%
The value of the car is then calculated as:
V = a * (1 -r)^t
Substitute known values
V = 27000 * (1 - 7%)^t
Evaluate the difference
V = 27000 * (0.93)^t
Hence, the exponential function models the value v of the car after t years is V = 27000 * (0.93)^t
Read more about exponential function at:
brainly.com/question/11464095
#SPJ1
Number of sweaters bought by Jocelyn = 2
Price of the 2 sweaters including tax and discount coupon = 23.56
Amount of ales tax taken = 1.36
Amount of discount coupon = 5.00
Then
Price of 2 sweaters before tax = 23.56 - 1.36
= 22.20
Then
Price of the sweater before discount coupon was applied = 22.20 + 5.00
= 27.20
So
Price of 1 sweater before tax and coupon discount = 27.2/2
= 13.6
So the price of 1 sweater before tax and coupon discount is 13.6.
Answer:
the answer is -8.
Step-by-step explanation:
hope this helps!