Kinetic energy = 0.5*m*velocity square.
solving we get velocity =10 metre /sec
Question #1: <span>PV = nRT </span>
<span>where P = 1 atm, n = 1.104 moles, R = the ideal gas constant .0821 L atm/mol K, T = 273.15K, and V is unknown. </span>
<span>Therefore we have: </span>
<span>1 * V = 1.104 * .0821 * 273.15 </span>
<span>V = 24.7L </span>
Answer:
439.7nm
Explanation:
Energy of a quantum can be calculated using below formula
E=hv...........eqn(1)
But v=λ/ c .........eqn(2)
If we substitute eqn(2) into eqn(1) we have
E= hc/(λ)
Where E= energy
h= Plank's constant= 6.62607004 × 10-34 m2 kg / s
c= speed of light
c= 2.998 × 10^8 m/s
λ= wavelength= ?
But the energy was given in Kj , it must be converted to Kj/ photon for unit consistency.
Energy E= 272 kJ/mol × 1mol/6.02× 10^23
Energy= 451.83× 10^-24 Kj/ photon
E= hc/(λ)...........eqn(1)
If we make λ subject of the formula
λ= hc/E
Then substitute the values we have
λ= [(6.626 × 10^-34) × (2.998 × 10^8)]/451.83× 10^-24
λ=(0.00043965) × (1Kj/1000J) × (10^9nm/1m)
λ=439.7nm
Hence, the longest wavelength of radiation with enough energy to break carbon-sulfur bonds is 439.7nm
The correct answer is C) Overpopulation of species.
Hope this helped! :)