Based on the ideal gas relation:
PV = nRT
where P = pressure ; V = volume ; T = temperature
n = number of moles; R = gas constant = 0.0821 L atm/mol-K
Step 1: Find the number of moles of O2
n = PV/RT = 1 * 3.90/0.0821*273 = 0.1740 moles
Step 2: Calculate the molecules of O2
Now, 1 mole of O2 corresponds to 6.023 * 10²³ molecules of O2
Therefore, 0.1740 moles of O2 corresponds to-
0.1740 moles of O2 * 6.023*10²³ molecules of O2/1 mole of O2
= 1.048 * 10²³ molecules of O2
Answer:
Calculus.... Differentiation and integration..... This two... is mathematical application... was the key of revealing the hidden mysteries of world
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
Answer:
jdjdjdhjxjxjchxjxjkxjxjxhxnxkjcjcjcj
Explanation:
sorry i just need point lolllllllllll