Answer:
Alkaline batteries stop working when all of the manganese dioxide has been converted.
Explanation: Hope it helps you :)))
Have a good day
BaSO₄ is relatively harmless, but BaS is highly toxic.
BaSO₄ is quite insoluble (240 µg/100 mL). It is a <em>mild irritant</em> in cases of skin contact and inhalation. However, it is <em>safe enough</em> that health professionals ask patients to drink a suspension of BaSO₄. The Ba is opaque to X-rays, so it makes the stomach and intestines more visible to radiographers.
BaS is soluble (7.7 g/100 mL). It reacts slowly with water and more rapidly in the acid conditions of the stomach to <em>release H₂S</em>.
BaS + 2HCl ⟶ BaCl₂ + H₂S
An H₂S concentration of 60 mg/100 mL can be <em>fatal within 30 min</em>.
<em>Don’t eat barium sulfide!</em>
Answer:
90.46 well that's how I got the answer from my calculations
Mass to moles
5.2 mol/Ca(no3)2 to mol
5.2 mol/Ca(no3)2 / molar mass
5.2 mol/Ca(no3)2 / 164.1= 0.032 g/Ca(no3)2
Answer:
HF is the limiting reactant
Explanation:
The balanced equation for the reaction is given below:
SiO₂ + 4HF —> SiF₄ + 2H₂O
From the balanced equation above,
1 mole of SiO₂ reacted with 4 moles of HF.
Finally, we shall determine the limiting reactant. This can be obtained as illustrated below:
From the balanced equation above,
1 mole of SiO₂ reacted with 4 moles of HF.
Therefore, 7.5 moles of SiO₂ will react with = 7.5 × 4 = 30 moles of HF.
From the calculation made above, we can see clearly that it will take a higher amount (i.e 30 moles) of HF than what was given from the question (i.e 5 moles) to react completely with 7.5 moles of SiO₂.
Therefore, HF is the limiting reactant and SiO₂ is the excess reactant.