Answer:
0.30 M
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t = ?
is the initial concentration = 1.36 M
k is the rate constant = 0.208 s⁻¹
t = 7.30 seconds
So,
Answer:
empirical formula is C7H3NCl2
Explanation:
too much work too explain and im lazy
Answer:
0 g.
Explanation:
Hello,
In this case, since the reaction between methane and oxygen is:

If 0.963 g of methane react with 7.5 g of oxygen the first step is to identify the limiting reactant for which we compute the available moles of methane and the moles of methane consumed by the 7.5 g of oxygen:

Thus, since oxygen theoretically consumes more methane than the available, we conclude the methane is the limiting reactant, for which it will be completely consumed, therefore, no remaining methane will be left over.

Regards.
It's simple, just follow my steps.
1º - in 1 L we have

of

2º - let's find the number of moles.



3º - The concentration will be

But we have this reaction

This concentration will be the concentration of

![K_{sp}=\frac{[Ba^{2+}][CO_3^{2-}]}{[BaCO_3]}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5Cfrac%7B%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BBaCO_3%5D%7D)
considering
![[BaCO_3]=1~mol/L](https://tex.z-dn.net/?f=%5BBaCO_3%5D%3D1~mol%2FL)
![K_{sp}=[Ba^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
and
![[Ba^{2+}]=[CO_3^{2-}]=5.07\times10^{-5}~mol/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO_3%5E%7B2-%7D%5D%3D5.07%5Ctimes10%5E%7B-5%7D~mol%2FL)
We can replace it


Therefore the

is: