Answer:
C. An 1s orbital
Explanation:
At the first energy level, the only orbital available to electrons is the 1s orbital, but at the second level, as well as a 2s orbital, there are also orbitals called 2p orbitals.
1 answer · Chemistry
Best Answer
Water steam condenses if its pressure is equal to vapor saturation vapor pressure.
Use the Clausius-Clapeyron relation.
I states the temperature gradient of the saturation pressure is equal to the quotient of molar enthalpy of phase change divided by molar volume change due to phase transition time temperature:
dp/dT = ΔH / (T·ΔV)
Because liquid volume is small compared to vapor volume
ΔV in vaporization is approximately equal to to the vapor volume. Further assume ideal gas phase:
ΔV ≈ V_v = R·T/p
Hence
dp/dT = ΔHv / (R·T²/p)
<=>
dlnp/dT = ΔHv / (R·T²)
If you solve this DE an apply boundary condition p(T₀)= p₀.
you get the common form:
ln(p/p₀) = (ΔHv/R)·(1/T₀ - 1/T)
<=>
p = p₀·exp{(ΔHv/R)·(1/T₀ - 1/T)}
For this problem use normal boiling point of water as reference point:
T₀ =100°C = 373.15K and p₀ = 1atm
Therefore the saturation vapor pressure at
T = 350°C = 623.15K
is
p = 1atm ·exp{(40700J / 8.314472kJ/mol)·(1/373.15K - 1/623.15K)} = 193 atm
hope this helps
The reaction is:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O; ΔH = 1410 kJ
When we reverse this reaction, the sign of the enthalpy change, ΔH, will be changed. The enthalpy change for the reversed reaction would be 1,410 kJ.
Next, we must also multiply the reaction by 2, so the final enthalpy change for the reverse reaction will be:
ΔH = 2,820 kJ