1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
14

A market sells bananas for $0.69 per pound. Which expression represents the cost, in dollars, of p pounds of bananas?

Mathematics
2 answers:
Black_prince [1.1K]3 years ago
6 0

Hello There!

<u><em>$0.69p would be the correct answer because each pound costs $0.69</em></u>

goldenfox [79]3 years ago
6 0

Answer: C=$0.69p

Step-by-step explanation:

You might be interested in
Can someone help me pls i put rhe question as a picture i would help alot​
GuDViN [60]
The answer would be D
8 0
3 years ago
Read 2 more answers
An office supply company manufactures paper clips, and even tolerates a small proportion of those paper clips being ‘defective’
vovikov84 [41]

Answer:

0.104 (10.4%)

Step-by-step explanation:

UCL = \bar{p}+z(\sigma)

\sigma = p(1-)) Vn = 1.02(1-202)) 5 = 0.028

\thereforeUCL = .02+(3x0.028) = 0.104

\thereforeUCL= 10.4%

4 0
3 years ago
Marketing company said 259 emails on Monday 431 emails on Tuesday and some emails on Wednesday if the company sent about like 13
atroni [7]

Answer:

610

Step-by-step explanation:

Given:

  • 259 emails on Monday
  • 431 emails on Tuesday
  • ? emails on Wednesday
  • Total emails = 1300

Add:

259 + 431 = 690

Subtract:

1300 - 690 = 610

So, on Wednesday 610 emails were sent out.

Hope this helped.

6 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
1. You are standing on top of a ridge using a clinometer trying to figure out how far your dog has wandered off in
olga_2 [115]

<u>Given:</u>

It is given that the ridge is 360 inches tall.

<u>Assumptions:</u>

Assume you are 170.1 cm tall which equals 67 inches tall, the height from your eye to the floor is 360+67 = 427 inches.

The distance from your eye level to the bottom of the ridge is 427 inches.

Assume the angle A is 60°.

<u>To find the distance from you to your dog.</u>

<u>Solution:</u>

A right-angled triangle can be formed where the angle is 60°, the distance between you and the dog is the hypotenuse of the triangle and your height from the floor is the adjacent side of the triangle.

Assume the hypotenuse of the triangle measures x inches.

To determine the length of the hypotenuse, we determine the cos of the angle.

cos \theta = \frac{adjacent side}{hypotenuse} .

cos A = \frac{427}{x} , x = \frac{427}{cos60} , cos60=0.5.

x=\frac{427}{0.5} = 854.

So if the ridge is 360 inches tall and you are 67 inches tall and the angle A is 60°, the distance between your dog and you is 854 inches.

3 0
3 years ago
Other questions:
  • Sam takes a job with a starting salary of $50,000 for the first year. He earns a 4% increase each ear. Which expression gives th
    11·1 answer
  • The square of a number I see equal to two less than three times the number. What are two possible values of the number? A. 1,2 B
    6·1 answer
  • 1.2 divided by .3 in the model
    14·2 answers
  • What would a monthly payment be on a purchase of a $10,000 car at a 5.9% for 4 years?
    5·2 answers
  • Flora made 7 withdrawals of $75 each from her bank account. How much did she withdraw in total?
    5·1 answer
  • А. y = 7<br> slope description
    5·1 answer
  • Since we know U is the midpoint, we can say TU equals BLANK? Substituting in our values for each we get BLANK? =12x - 1
    8·1 answer
  • pls help lol I have a B in math right now and i dont understand slope or rate of change. This is an extra credit assignment for
    8·2 answers
  • 90×10 4<br><br><br> please help me guys
    9·1 answer
  • Three friends grow groups of sunflowers. Some think that Anna’s flowers are the tallest because the mean height of her flowers i
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!