Answer : The freezing point of a solution is 
Explanation : Given,
Molal-freezing-point-depression constant
= 
Mass of urea (solute) = 29.82 g
Mass of solvent = 500 g = 0.500 kg
Molar mass of urea = 60.06 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = ?
= freezing point of solvent = 
i = Van't Hoff factor = 1 (for urea non-electrolyte)
= freezing point constant = 
m = molality
Now put all the given values in this formula, we get


Therefore, the freezing point of a solution is 
Answer:
The independent variable is the height of the ball that bounces.
Answer:
352
Explanation:
.75 times 472 because .25 is sugar so .75 is watet
Yes you are correct good job!
Answer:
When you heat ice, the individual molecules gain kinetic energy, but until the temperature reaches the melting point, they don't have energy to break the bonds that hold them in a crystal structure. They vibrate more quickly within their confines as you add heat, and the temperature of the ice goes up.