Answer:
4.92 grams of sodium phosphate (Na₃PO₄) are required to make 125 milliliters of a 0.240 M.
Explanation:
Molarity is a measure of concentration that indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:
Molarity is expressed in units
.
In this case:
- Molarity= 0.240 M
- number of moles= ?
- volume= 125 mL= 0.125 L
Replacing in the definition of molarity:

Solving:
number of moles= 0.240 M*0.125 L
number of moles= 0.03 moles
Being the molar mass of sodium phosphate 164 g/mole, that is, the mass of one mole of the compound, you can calculate the mass of 0.03 moles using the following rule of three: if 1 mole of the compound has 164 grams, 0.03 moles contains how much mass?

mass= 4.92 grams
<u><em>4.92 grams of sodium phosphate (Na₃PO₄) are required to make 125 milliliters of a 0.240 M.</em></u>
Answer:
Climate, atmosphere, and land
Explanation:
Some of the data collected include air chemistry, temperature, precipitation, cloud cover, and wind speed. Instruments carried on balloons and wind profiling radar provide observations from the surface to more than 10 miles high.
The balanced equation for the above reaction is
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of NaOH moles required-0.5000 M / 1000 mL/L x 21.17 mL = 0.010585 mol
According to stoichiometry, acid moles required are 1/2 of the base moles reacted
Therefore number of H₂SO₄ moles reacted - 0.010585 /2 mol
Number of moles in 42.35 mL of H₂SO₄ - 0.010585 /2 mol
Therefore in 1 L solution - (0.010585) /2 / 42.35 mL x 1000 mL/L = 0.125 M
Molarity of H₂SO₄ - 0.125 M
Answer:

Explanation:
Hello,
In this case, we can compute the required volume by using the ideal gas equation as shown below:

Thus, solving for the volume and considering absolute temperature (in Kelvins), we obtain:

Best regards.
The formula is for 1 Calcium, 3 Magnesium, 4 Carbon, & 12 Oxygen. The 4 after the parenthesis of (CO3) distributes to each element.
Answer : There are 4 Carbon atoms in the formula.