Answer: option C.Water will move into the cell
Explanation:
1) Start by analyzing what the statement means in terms of relative concentrations:
------------------------ | inside the cell ------------ | outside the cell |
sugar --------------- | higher ----------------------- | lower ------------- |
water -------------- | lower ------------------------- | higher ------------ |
2) Osmosis is the process where a barrier (the celll membrane) permits the pass of some component and not others.
The component that can pass is that whose particles are smaller. Sugar molecules (the solute) are bigger than water molecules (the solvent), so sugar molecules cannot pass the cell membrane. Only water can.
3) The driviing force for the motion of water molecules is called diffusion. The diffusion occurs from higher concentrations to lower concentrations.
Hence, the water molecules will from outside the outiside the cell, where they have the greater concentration, toward the inside of the cell, where water hasa the lower concentration.
As result, the water will move into the cell, which is the option C.
Answer:
1. acid
2. neutral
3. acid
4. base
5. acid
6. base
7. neutral
8. acid
9. base
10. base
Explanation:
I'm not 100 percent positive about number three but the rest I believe are correct
Answer:
The goal of Science is to expand knowledge.
Explanation:
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!