It is about 100oC at a pressure of 1.1 atmosphere. Hope this helps.
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
-I believe the star gives off energy-, With<span> most </span>stars<span>, like our sun, hydrogen </span>is<span> being converted into Helium, a process which gives </span>off<span> energy that heats the </span>star<span>.</span>
Answer:
Then the difference of weight between the two cars are:
Δw = 14210 - 5292 = 8918 N
Explanation:
An object's weigh due to the gravitational attraction force of the earth is:
w = mg
Where: m is the object's mass
g is the gravitational acceleration in the surface earth
g = 9.8 m/s2
The the ultralight car's weight is:


And the Honda Accord's weight is:


Then the difference of weight between the two cars are:
Δw = 14210 - 5292 = 8918 N
A sound wave is a longitudinal wave caused by vibrations and carried through a substance. The particles of the substance, such as air particles, vibrate back and forth along the path that the sound waves travel. Sound is transmitted through the vibrations and collisions of the particles.
This could maybe help you with your answer.