Answer:
C
Explanation:
repeated in intervals of time
Here is the correct answer of the given problem above.
Given that the basket has a mass of 5.5kg, the magnitude of the normal force if the basket is at rest on a ramp inclined above the horizontal is at 12 degrees. The solution is simple:
<span>Fn at rest = lmgl </span>
<span>= 5.5kg (9.80N/kg)
=</span><span> mgCos12degrees
Hope this answer helps. </span>
Odpowiedź:
0,049 m / s
Wyjaśnienie:
Biorąc pod uwagę, że:
Dystans biegu = 900m
Czas trwania = 205 minut
Długość przejścia = 300 m
Zajęty czas = 205 minut
Średnia prędkość :
(Przebieg + pokonany dystans) / całkowity czas
Średnia prędkość :
(900 m +. 300 m) / 205 + 205
1200 m / 410 minut
Minuty do sekund
1200 / (410 * 60)
1200/24600
= 0,0487804
= 0,049 m / s
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is