Answer:
9
Step-by-step explanation:
Let the two perfect cubes be x and y where x > y.
According to the given conditions:
![{x}^{3} - {y}^{3} = 386...(1) \\ y = 7...(2) \\ plug \: y = 7 \: in \: equation \: (1) \\ {x}^{3} - {7}^{3} = 386 \\ {x}^{3} - 343 = 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 729 \\ x = \sqrt[3]{729} \\ x = 9](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7By%7D%5E%7B3%7D%20%20%3D%20386...%281%29%20%5C%5C%20y%20%3D%207...%282%29%20%5C%5C%20plug%20%5C%3A%20y%20%3D%207%20%5C%3A%20in%20%5C%3A%20equation%20%5C%3A%20%281%29%20%5C%5C%20%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7B7%7D%5E%7B3%7D%20%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20-%20%20343%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%3D%20729%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7B729%7D%20%20%5C%5C%20x%20%3D%209)
Thus the cube root of the larger number is 9.
A. 16 is divisible by 2 but not divisible by 3
B. 23 is not divisible neither by 2 nor 3
C. 27 is not divisible by 2, however it's divisible by 3
D. 36 is divisible both by 2 and 3
So the only number we can focus on is 36:
36 ÷ 2 = 18
36 ÷ 3 = 12
36 ÷ 6 = 6
Answer: D, 36 supports the given conjecture.
Check the picture below, notice those three quadrilaterals.
the square, is really a rectangle and is also a rhombus, but with right-angles and equal sides.
It's B and C
hope this helps