<span> A </span>catalyst<span> will </span>appear<span> in the steps of a </span>reaction<span> mechanism, but it will not </span>appear<span> in the overall </span><span>chemical reaction</span>
The specific heat in, J /g °C of copper is 0.386J/g°C
HOW TO CALCULATE SPECIFIC HEAT CAPACITY OF A SUBSTANCE:
- The specific capacity of a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
Q = quantity of heat absorbed or released (J)
m = mass of substance (g)
∆T = change in temperature (°C)
c = specific heat capacity (J/g°C)
For a colorimeter, the following equation applies:
m.c.∆T (water) = - m.c.∆T (metal)
m = 50g
c = 4.184 J/g°C
∆T = 29.2 - 26°C = 3.2°C
m = 70g
c = ?
∆T = 29.2 - 54°C = -24.8°C
m.c.∆T (water) = - m.c.∆T (metal)
50 × 4.184 × 3.2 = -(70 × c × -24.8)
669.44 = 1736c
c = 669.44 ÷ 1736
c = 0.386J/g°C
Therefore, the specific heat in, J /g °C of copper is 0.386J/g°C
Learn more at: brainly.com/question/16787162?referrer=searchResults
Answer:
D. 5.0
Explanation:
Step 1: Write the balanced equation at equilibrium
2 NO₂(g) ⇄ N₂O₄(g)
Step 2: Calculate the concentration equilibrium constant
The concentration equilibrium constant (Kc) is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients.
Kc = [N₂O₄]/[NO₂]² = 0.2 / 0.2² = 5
<h2>
Answer:</h2>
<em>magnetic field lines are always directed in S_N direction.</em>
<em> hope this will help you </em>