Answer: The maximum wavelength of light for which a carbon-chlorine Single bond could be broken by absorbing a single photon is 354 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
where,
E = energy of the light =
(1kJ=1000J)
N= avogadro's number
h = Planck's constant
c = speed of light
= wavelength of light

Thus the maximum wavelength is 354 nm
To be honest, I learned this in school so I'll tell you XD
The formula of sodium oxide is Na2O
The answer is 4.9 moles.
Solution:
Using the equation for boiling point elevation Δt,
Δt = i Kb m
we can rearrange the expression to solve for the molality m of the solution:
m = Δt / i Kb
Since we know that pure water boils at 100 °C, and the Ebullioscopic constant Kb for water is 0.512 °C·kg/mol,
m = (105°C - 100°C) / (2 * 0.512 °C·kg/mol)
= 4.883 mol/kg
From the molality m of the solution of salt added in a kilogram of water, we can now find the number of moles of salt:
m = number of moles / 1.0kg
number of moles = m*1.0kg
= (4.883 mol/kg) * (1.0kg)
= 4.9 moles
Answer:
1552.83J Released
Explanation:
1. mass/m=225
Initial temp:86C, final:32.5C
Changed Temp: 32.5-86= -53.5C
s=0.129 J/gC
Formula: q= m times s times changed Temp.
q=(225)(0.129)(-53.5)
q= -1552.83 J
q=1552.83 J Released