you need another equation to solve them simultaneously since they are two unknown
Answer:
16x^2 - 64
Step-by-step explanation:
(4x − 8)(4x + 8)
We recognize that this is the difference of squares
(a-b) (a+b) = a^2 - b^2
=(4x)^2 - 8^2
=16x^2 - 64
Hi there,
This is the original inequality equation:

So, we first need to find the critical points of equality, and we can do that by switching the less than sign to an equal sign.

Now, we multiply both sides by x + 1:

Then, we multiply both sides by x - 1:

Next, we subtract x² from both sides:

After that, we solve for x. We do this by adding -x to both sides and dividing by 2. Doing so gives us x = 0, which is our first critical point. We need to find a few more critical points by testing x = -1 and x = 1. Here is how we do that:
<span>x = <span>−1 </span></span>(Makes left denominator equal to 0)<span>x = 1 </span>(Makes right denominator equal to 0)Check intervals in between critical points. (Test values in the intervals to see if they work.)<span>x <<span>−1 </span></span>(Doesn't work in original inequality)<span><span><span>−1 </span>< x </span><0 </span>(Works in original inequality)<span><span>0 < x </span>< 1 </span>(Doesn't work in original inequality)<span>x > 1 </span><span>(Works in original inequality)
Therefore, the answer to your query is
-1 < x < 0 or x > 1. Hope this helps and have a phenomenal day!</span>
Answer:
second one
Step-by-step explanation:
am pretty sure
Answer:
And we can find this probability using the normal standard table or excel:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the amount of ml of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the normal standard table or excel: