Part A;
There are many system of inequalities that can be created such that only contain points C and F in the overlapping shaded regions.
Any system of inequalities which is satisfied by (2, 2) and (3, 4) but is not stisfied by <span>(-3, -4), (-4, 3), (1, -2) and (5, -4) can serve.
An example of such system of equation is
x > 0
y > 0
The system of equation above represent all the points in the first quadrant of the coordinate system.
The area above the x-axis and to the right of the y-axis is shaded.
Part 2:
It can be verified that points C and F are solutions to the system of inequalities above by substituting the coordinates of points C and F into the system of equations and see whether they are true.
Substituting C(2, 2) into the system we have:
2 > 0
2 > 0
as can be seen the two inequalities above are true, hence point C is a solution to the set of inequalities.
Part C:
Given that </span><span>Natalie
can only attend a school in her designated zone and that Natalie's zone is
defined by y < −2x + 2.
To identify the schools that
Natalie is allowed to attend, we substitute the coordinates of the points A to F into the inequality defining Natalie's zone.
For point A(-3, -4): -4 < -2(-3) + 2; -4 < 6 + 2; -4 < 8 which is true
For point B(-4, 3): 3 < -2(-4) + 2; 3 < 8 + 2; 3 < 10 which is true
For point C(2, 2): 2 < -2(2) + 2; 2 < -4 + 2; 2 < -2 which is false
For point D(1, -2): -2 < -2(1) + 2; -2 < -2 + 2; -2 < 0 which is true
For point E(5, -4): -4 < -2(5) + 2; -4 < -10 + 2; -4 < -8 which is false
For point F(3, 4): 4 < -2(3) + 2; 4 < -6 + 2; 4 < -4 which is false
Therefore, the schools that Natalie is allowed to attend are the schools at point A, B and D.
</span>
Answer:
140
Step-by-step explanation:
When working HCF and LCM problems, I like to think in terms of this little diagram:
(a [ b ) c]
It shows me one of the numbers is ab, the other is bc, the HCF is b and the LCM is abc. "a" and "c" must be relatively prime for "b" to be the HCF.
__
Here, we're given ...
b = 20
ab = 320
abc = 2240
Then ...
c = abc/(ab) = 2240/320 = 7
x = bc = 20(7) . . . . . . equivalently, x = (abc·b)/(ab) = (2240·20)/320
x = 140
Answer:
R = 17
Step-by-step explanation:
R = 2q - 5
Q = 3p + 2
Find the numerical value of R when p = 3
R = 2q - 5
R = 2(3p + 2) - 5
R = 6p + 4 - 5
R = 6p - 1
When p = 3
R = 6(3) - 1
R = 18 - 1
R = 17