Answer:
1) After adding 15.0 mL of the HCl solution, the mixture is before the equivalence point on the titration curve.
2) The pH of the solution after adding HCl is 12.6
Explanation:
10.0 mL of 0.25 M NaOH(aq) react with 15.0 mL of 0.10 M HCl(aq). Let's calculate the moles of each reactant.


There is an excess of NaOH so the mixture is before the equivalence point. When HCl completely reacts, we can calculate the moles in excess of NaOH.
NaOH + HCl ⇒ NaCl + H₂O
Initial 2.5 × 10⁻³ 1.5 × 10⁻³ 0 0
Reaction -1.5 × 10⁻³ -1.5 × 10⁻³ 1.5 × 10⁻³ 1.5 × 10⁻³
Final 1.0 × 10⁻³ 0 1.5 × 10⁻³ 1.5 × 10⁻³
The concentration of NaOH is:
![[NaOH]=\frac{1.0 \times 10^{-3} mol }{25.0 \times 10^{-3} L} =0.040M](https://tex.z-dn.net/?f=%5BNaOH%5D%3D%5Cfrac%7B1.0%20%5Ctimes%2010%5E%7B-3%7D%20mol%20%7D%7B25.0%20%5Ctimes%2010%5E%7B-3%7D%20L%7D%20%3D0.040M)
NaOH is a strong base so [OH⁻] = [NaOH].
Finally, we can calculate pOH and pH.
pOH = -log [OH⁻] = -log 0.040 = 1.4
pH = 14 - pOH = 14 - 1.4 = 12.6
Answer:
2 Na + 1 Cl2 -> 2 NaCl
Explanation:
The answer is really simple, because if you have 1 nonmetal element that has a subscript of 2, you need to multiply the product and the first reactant by 2 to balance it.
Answer:
The balanced equation is :
Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g)
326000 mm is incorrect as it is either the one in cm or mm. cm aligns with m so it must be mm
Answer:A theory is a well-substantiated explanation of an aspect of the natural world that can incorporate laws, hypotheses and facts.
Explanation: