Answer:
A cat that falls out of the window even if it seems to be doing well, must urgently go to a veterinary clinic in order to be placed under surveillance for at least 24 to 72 hours
Explanation:
298 g of calcium carbonate CaCO₃
Explanation:
We have the following chemical reaction:
CaCN₂ (s) + 3 H₂O (l) → CaCO₃ (s)+ 2 NH₃ (g)
number of moles = mass / molar weight
number of moles of H₂O = 161 / 18 = 8.94 moles
Knowing the chemical reaction we devise the following reasoning:
if 3 moles of H₂O produces 1 mole of CaCO₃
then 8.94 moles of H₂O produces X moles of CaCO₃
X = (8.94 × 1) / 3 = 2.98 moles of CaCO₃
mass = number of moles × molar weight
mass of CaCO₃ = 2.98 × 100 = 298 g
Learn more about:
number of moles
brainly.com/question/1445383
brainly.com/question/516702
#learnwithBrainly
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 24.5
(a) Moles of C₆H₁₂O₆

(b) Moles of CO₂

(c) Volume of CO₂
We can use the Ideal Gas Law.
pV = nRT
Data:
p = 0.960 atm
n = 0.8159 mol
T = 37 °C
(i) Convert the temperature to kelvins
T = (37 + 273.15) K= 310.15 K
(ii) Calculate the volume
