Well, you can put various math problems into one. Equations can also show more information easier than writing many problems. Hope this helps, and keep learning!
I’m assuming what you’re asking here is how to *factor* this expression. For that, let’s rearrange the expression into a more familiar form:
-c^2-4c+21
From here, we’ll factor out a -1 so that we have:
-(c^2+4c-21)
Let’s focus on the quadratic expression inside the parentheses. To find our factors (c + x)(c + y), we’ll need to find two terms x and y that multiply together to make -21 and add together to make 4. It turns out that the numbers -3 and 7 work out perfectly for that purpose (-3 x 7 = -21 and 7 + (-3) = 4), so substituting them in for x and y, we have:
(c + (-3))(c + 7)
(c - 3)(c + 7)
And adding back on the negative from a few steps earlier:
-(c - 3)(c + 7)
Answer:
2/5
Step-by-step explanation:
-2/5-(-4/5) (remove the parentheses)
-2/5+4/5 (calculate)
solution: 2/5
hope this helps!
<span>The median would be preferred over the mean in such scenarios because the median will lessen the impact of the outliers that fall within the "tail" of the skew. Therefore, if a curve is normally distributed, that is to say that data is normally distributed, there will be two tails, each with approximately equal proportions of outliers. Outliers in this case being more extreme numbers, and are based on your determination depending on how you are using the data. If data is skewed there is one tail, and therefore it may be an inaccurate measure of central tendency if you use the mean of the numbers. Thinking of this visually. In positively skewed data where there is a "tail" towards the right and a "peak" towards the left, the median will be placed more in the "peak", whereas the mean will be placed more towards the "tail", making it a poorer measure of central tendency, or the center of the data.</span>
Answer:
Step-by-step explanation:
In order to write the equation of the line perpendicular to the given line, we first have to know what the slope of the given line is, and there's no way to tell by looking at it in its current form, which is standard. We need to solve that equation for y to determine the slope of that line. Solving for y:
and
3y = 4x - 5 (just change all the signs so our y term isn't negative anymore...yes, you're "allowed" to do that!) and
So we can see now that the slope of this line is 4/3. That means that the perpendicular slope is -3/4. Passing through the given point (3, 5):
* and
and
so
** and, in standard form:
4y = -3x + 29 and
3x + 4y = 29***
* : point-slope form
** : slope-intercept form
*** : standard form