Explanation
Given a function f(x) we translate the function:
• a units horizontally (a > 0 to the right, a < 0 to the left),
,
• b units vertically (b > 0 up, b < 0 down),
by the transformation:

In this case, we have:

Comparing f(x) and g(x) with the general transformation above, we see that the graph of g(x) is the graph of f(x) translated:
• a = 2 units to the right,
,
• b = 4 units up.
Translating the graph of f(x), we get:
Answer
The translated graph is the graph in red:
Answer:
There are 42 different types of shirt available for this company.
Step-by-step explanation:
Given:
Number of design Company has = 3
Number of color pattern available = 7
Types of shirt (short or long sleeves) = 2
We need to find the number of different types of shirts are available from this company.
Solution:
the number of different types of shirts can be calculated by multiplying Number of design Company has with Number of color pattern available also multiplying with Types of shirt (short or long sleeves).
framing in equation form we get;
the number of different types of shirts 
Hence There are 42 different types of shirt available for this company.
Answer:
16.1
Step-by-step explanation:
<h3>
Answer: 680 different combinations</h3>
=======================================================
Explanation:
If order mattered, then we'd have 17*16*15 = 4080 different permutations. Notice how I started with 17 and counted down 1 at a a time until I had 3 slots to fill. We count down by 1 because each time we pick someone, we can't pick them again.
So we have 4080 different ways to pick 3 people if order mattered. But again order doesn't matter. All that counts is the group itself rather than the individual or how they rank. There are 3*2*1 = 6 ways to order any group of three people, which means there are 4080/6 = 680 different combinations possible.
An alternative is to use the nCr formula with n = 17 and r = 3. That formula is

where the exclamation marks indicate factorials