Answer:
D
Step-by-step explanation:
74 + 93 + 117= 284
360 - 284 = 76
Standard form is, hold a sec
x=2 is directix
that means it opens left or right
so we must use
(y-k)²=4p(x-h)
where vertex is (h,k) and p is distance from focus to vertex
also shortest distance from vertex to directix
the shortest distance from focus to directix is 2p
if p>0 then the parabola opens right
if p<0 then pareabola opens left
so
(-2,0) and x=2
the distance is 4
4/2=2
p=2
wait, positive or negative
focus is to the left of the directix so p is negative
p=-2
vertex is 2 to the right of the focus and 2 to the left of directix
vertex is (0,0)
so
(y-0)²=4(-2)(x-0) or
y²=-8x is da equation
not sure what form is standard tho
The equations used to find the measure of each angle in degrees is x + y = 90 and x = 6y - 1
The two complementary angles are 77 degrees and 13 degrees
<em><u>Solution:</u></em>
Given that two angles are complementary angles
Complementary angles are two angles whose sum is 90 degrees
Let one of the angle be "x" and the other angle be "y"
Therefore,
x + y = 90 ------ eqn 1
Also given that,
One angle is one less than six times the measure of another
one angle = six times the other angle - 1
x = 6y - 1 ------ eqn 2
Substitute eqn 2 in eqn 1
6y - 1 + y = 90
Thus the above equation is used to find the measure of each angle in degrees
Solve the above equation
6y + y - 1 = 90
7y - 1 = 90
7y = 91
y = 13
Substitute y = 13 in eqn 2
x = 6(13) - 1
x = 78 - 1
x = 77
Thus the two complementary angles are 77 degrees and 13 degrees
Answer:
12
Step-by-step explanation:
Strictly speaking, x^2 + 2x + 4 doesn't have solutions; if you want solutions, you must equate <span>x^2 + 2x + 4 to zero:
</span>x^2 + 2x + 4= 0. "Completing the square" seems to be the easiest way to go here:
rewrite x^2 + 2x + 4 as x^2 + 2x + 1^2 - 1^2 = -4, or
(x+1)^2 = -3
or x+1 =i*(plus or minus sqrt(3))
or x = -1 plus or minus i*sqrt(3)
This problem, like any other quadratic equation, has two roots. Note that the fourth possible answer constitutes one part of the two part solution found above.