Answer:
M = 3.0 mol/L.
Explanation:
- We can calculate the molarity of a solution using the relation:
<em>M = (mass x 1000) / (molar mass x V)</em>
- M is the molarity "number of moles of solute per 1.0 L of the solution.
- mass is the mass of the solute (g) (m = 87.75 g of NaCl).
- molar mass of NaCl = 58.44 g/mol.
- V is the volume of the solution (ml) (V = 500.0 ml).
∴ M = (mass x 1000) / (molar mass x V) = (87.75 g x 1000) / (58.44 g/mol x 500.0 ml) = 3.0 mol/L.
It is.
An acid will be strong when its conjugated base is highly stable, and vice-versa.
That can occur for instance through electronic delocalization.
Answer: 0.52V
Explanation:
Ecell = Ecell(standard) - [(0.0592 logQ)/n]
Q = product of the quotient
n = no of electrons transferred = 2
Ecell = 0.63 - [(0.0592*Log(1 / 2.0 * 10-4) / 2]
Ecell = 0.63 - 0.0194
Ecell = 0.5205V
Answer:
Molarity is the number of moles in a liter of a substance.
Molarity= Mole/volume
Mass= 10g
Molar mass of Carbon=12g
To calculate the mole we use the formula: mole= mass/molar mass
Mole = 10g/12g
Mole = 0.83
Molarity= 0.83/500 =0.0017moles per liter