The empirical formula, <span>C<span>H2</span></span>, has a relative molecular mass of
<span>1×<span>(12.01)</span>+2×<span>(1.01)</span>=14.04</span>
This means that the empirical formula must be multiplied by a factor to bring up its molecular weight to 70. This factor can be calculated as the ratio of the relative masses of the molecular and empirical formulas
<span><span>7014.04</span>=4.98≈5</span>
Remember that subscripts in molecular formulas must be in whole numbers, hence the rounding-off. Finally, the molecular formula is
<span><span>C<span>1×5</span></span><span>H<span>2×5</span></span>=<span>C5</span><span>H<span>10</span></span></span>
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹
Atoms in the amino acids become the h₂O molecule produced by their action in the model and come off from the central carbon and nitrogen but not from the carboxyl, R side chain, or amine.
An amino acid is a group of organic molecules that consist of a basic acidic carboxyl group (―COOH), amino group (―NH2), and an organic R group (or side chain) that is different from each amino acid. Amino acid, the term is a short form of α-amino [alpha-amino] carboxylic acid.
Whereas, the peptide bond is the chemical bond which is a chemical bond formed between two molecules when the carboxyl group of a particular molecule reacts with the amino group of the other molecule, leading to releasing a molecule of water (H2O).
Each molecule consists of a central carbon atom referred to as the α-carbon, to which both a carboxyl group and amino are attached. The remaining two bonds of the α-carbon atom are generally occupied by the R group and a hydrogen (H) atom .
To know more about amino acids refer to the link brainly.com/question/14583479?referrer=searchResults.
#SPJ4
Answer:
Explanation:
Ionic bond:
It is the bond which is formed by the transfer of electron from one atom to the atom of another element.
Both bonded atoms have very large electronegativity difference. The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.
For example:
Sodium chloride is ionic compound. The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion. Both atoms are joint together by electrostatic interaction and ionic compound sodium chloride is formed.
Covalent bond:
It is formed by the sharing of electron pair between bonded atoms.
The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive and both bonded atoms connected together through covalent bond.