Answer: the ability to be dissolved, especially in water.
Explanation: I think the answer you've picked is right
Hope this helps
Answer:
<h2>6426000 mg</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question
63 mL = 63 cm³
We have
mass = 102 × 63 = 6426
But 1 g = 1000 mg
6426 g = 6426000 mg
We have the final answer as
<h3>6,426,000 mg</h3>
Hope this helps you
Answer:
Li2S> Na2S> K2S> CsS
Explanation:
The lattice energy of ionic species depends on the relative sizes of ions in the ionic compounds. As the size of ions increases, the lattice energy decreases and vice versa.
When the size of the anions are the same, the lattice energy now depends on the relative sizes of the cations. Therefore, since all the compounds are sulphides and the order of magnitude of ionic sizes is: Li^+ < Na^+ < K^+ < Cs^+.
Therefore, the order of decrease in lattice energy is; Li2S> Na2S> K2S> CsS
Answer:
28.7664 kJ /mol
Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:

Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
The graph of ln P and 1/T gives a slope of - ΔHvap/ R and intercept of c.
Given :
Slope = -3.46×10³ K
So,
- ΔHvap/ R = -3.46×10³ K
<u>ΔHvap = 3.46×10³ K × 8.314×10⁻³ kJ /mol K = 28.7664 kJ /mol</u>
<u></u>
Answer:
614 034 kg
Explanation:
n = m/Mm
m = n * Mm
Mm(MgSO4) = 1 * 24.3 * 1 * 32.1 * 4 * 16 = 49921.92
m = 12.3 * 49921.92
m = 614 034 kg