Answer:
H = 45 m
Explanation:
First we find the launch velocity of the ball by using the following formula:
v₀ = √(v₀ₓ² + v₀y²)
where,
v₀ = launching velocity = ?
v₀ₓ = Horizontal Component of Launch Velocity = 15 m/s
v₀y = Vertical Component of Launch Velocity = 30 m/s
Therefore,
v₀ = √[(15 m/s)² + (30 m/s)²]
v₀ = 33.54 m/s
Now, we find the launch angle of the ball by using the following formula:
θ = tan⁻¹ (v₀y/v₀ₓ)
θ = tan⁻¹ (30/15)
θ = tan⁻¹ (2)
θ = 63.43°
Now, the maximum height attained by the ball is given by the formula:
H = (v₀² Sin² θ)/2g
H = (33.54 m/s)² (Sin² 63.43°)/2(10 m/s²)
<u>H = 45 m</u>
A centimeter cannot measure mass because mass is measured by grams.
Answer: Centimeter
That's THERMAL energy, often referred to as "heat".
Answer:
copying another writer's work with no attempt to acknowledge that the material was found in external source is considered as a direct plagiarism.
Complete Question
The angular speed of an automobile engine is increased at a constant rate from 1120 rev/min to 2560 rev/min in 13.8 s.
(a) What is its angular acceleration in revolutions per minute-squared
(b) How many revolutions does the engine make during this 20 s interval?
rev
Answer:
a

b

Explanation:
From the question we are told that
The initial angular speed is 
The angular speed after
is 
The time for revolution considered is
Generally the angular acceleration is mathematically represented as

=>
=> 
Generally the number of revolution made is
is mathematically represented as

=> 
=> 