Answer:
K.E₂ = mg(h - 2R)
Explanation:
The diagram of the car at the top of the loop is given below. Considering the initial position of the car and the final position as the top of the loop. We apply law of conservation of energy:
K.E₁ + P.E₁ = K.E₂ + P.E₂
where,
K.E₁ = Initial Kinetic Energy = (1/2)mv² = (1/2)m(0 m/s)² = 0 (car initially at rest)
P.E₁ = Initial Potential Energy = mgh
K.E₂ = Final Kinetic Energy at the top of the loop = ?
P.E₂ = Final Potential Energy = mg(2R) (since, the height at top of loop is 2R)
Therefore,
0 + mgh = K.E₂ + mg(2R)
<u>K.E₂ = mg(h - 2R)</u>
Answer:
No, the magnitude of the magnetic field won't change.
Explanation:
The magnetic field produced by a wire with a constant current is circular and its flow is given by the right-hand rule. Since this field is circular with center on the wire the magnitude of the magnetic field around the wire will be given by B = [(\mi_0)*I]/(2\pi*r) where (\mi_0) is a constant, I is the current that goes through the conductor and r is the distance from the wire. If the field sensor will move around the wire with a fixed radius the distance from the wire won't change so the magnitude of the field won't change.
Answer:
No, it is not magnetized.
Explanation:
Bar B does not necessarily have to be magnetized before it can be attracted to a magnet. It just has to be a magnetic material such as Iron.
If bar B were magnetized, it could either be attracted or repelled by the magnet since this would depend on the side of the pole of bar B facing it.
Since we are not given any information about bar B other than it is attracted to the magnet, it is thus not magnetized.
Answer:
81.8 m/s
Explanation:
The initial velocity of the plane is:
(toward east)
So, decomposing along the x- and y- directions:

(we took east as positive x-direction and north as positive y-direction)
The acceleration is
(northwest, so the angle with the positive x-direction is 135 degrees)
Decomposing it along the two directions:

So the two components of the velocity after a time t = 25.0 s will be

So, the magnitude of the velocity of the plane will be

Answer:
due to the effect of gravity begins thermonuclear fusion processes, in these processes energy is released in the form of electromagnetic radiation
Explanation:
The Sun is a star of great size, which due to the effect of gravity begins thermonuclear fusion processes, in these processes energy is released in the form of electromagnetic radiation.
This radiation crosses the different layers of the Sun and escapes from it in the form of light that is emitted throughout the radiation spectrum, due to the temperature reached by the Sun about 5500K the most likely radiation is around 5500 nm corresponding to the green- yellow of the visible spectrum, but the entire spectrum is emitted with different intensity according to Stefan's law
In quantum mechanics this spectrum can also be analyzed as the emission of particles called photons, where each one is characterized by an energy and has a moment equal to zero, the energy of these photons is related to their frequency by the Planck equation
E = h f