Given :
Initial velocity , u = 0 m/s² .
To Find :
The acceleration of the cart.
Solution :
Since, acceleration is constant.
Using equation of motion :

Putting, t = 1 s and x = 4 m in above equation, we get :

Therefore, the acceleration of the cart is 8 m/s².
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
Answer:
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
Explanation:
The speed is constant since there is no opposite force facing the car
That’s my best guest hope it helps !! :)