1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gregori [183]
3 years ago
12

KN is perpendicular bisector of MQ identify the value of x

Mathematics
1 answer:
ExtremeBDS [4]3 years ago
4 0

Answer:

x = 6

Step-by-step explanation:

Since KN is the perpendicular bisector, that means ∠KNM = ∠KNQ = 90° and MN = NQ so therefore, since they are right triangles, ΔKNM ≅ ΔKNQ because of HL. Therefore, KM = KQ by CPCTC so:

5x - 3 = 3x + 9

2x = 12

x = 6

You might be interested in
7 less than three fifths of b is a
Citrus2011 [14]
It would be 3/5b-7=y?
4 0
3 years ago
Read 2 more answers
What is a factor of 67
pishuonlain [190]

Answer:The factors of 67. Answer : 1,67

Step-by-step explanation:

6 0
3 years ago
Inequality’s of (0,3) (2,-3)
Inga [223]

Good question next quetionn

5 0
3 years ago
Part I: Describe the center and radius of the circle.
trasher [3.6K]

Answer:

Center (2,4) , radius=3, h=2 v=4 & r=3

Step-by-step explanation:

Ok so in order to find the center of the circle, use the graph (like you can see that the x is 2,if you count down from 5 to the left. the y is 4,because it's below 5 in the y pole).So the center is (2,4)

Now, in order to find the length of the radius, you need to do the following:

Take the center point (2,4) and the point where the circle ends (2,1) . Because radius is a straight, you can substract the y values of the two points : 4-1=3

As you can see in the equation, the h symbolizes the x of the center point and the v symbolizes the y.The r is the radius that we already found(3)

So it's shouldn't be a problem now to find the equation of the circle,simply replace the values with their numbers:

(x-2)^2 + (y-4)^2 = 9

4 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Other questions:
  • Is the number prime or composite?<br><br> 29<br><br> A.prime<br><br> B.composite
    14·1 answer
  • How many millimeters are in 1 meter? Use the metric table to help answer the question.
    10·2 answers
  • Determine whether (0, 5) is a solution for y=3x-5.
    8·1 answer
  • A basket of laundry is being separated. Divide 48 pieces into 2 clothing groups so the ratio is 1 to 3
    8·1 answer
  • Help ASAP please ! Explain too for brainlist
    6·1 answer
  • Simplify by combining like terms: 3x + 3x + 3x
    14·2 answers
  • I’m supposed to find the slope intercept form. The x intercept is (2,0) and the y intercept is (0,6). I keep getting 6/2. But, t
    10·1 answer
  • Need help quick please
    15·2 answers
  • Evaluate the following<br> a) 4!=<br> b) 0!=<br> c) 2! + 3!=<br> d) 3! x 4!<br> e) 10! / 7!
    5·1 answer
  • Can you help me i will mark brainliest
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!