The frequency of the wave is 50 Hz
Explanation:
The frequency of the wave is defined as the number of cycles per second of the wave:

where
N is the number of cycles completed in a time t.
Frequency is measured in Hertz (Hz).
In this problems, the wave has
N = 100 pulses
in
t = 2.0 s
Therefore, its frequency is

Learn more about waves and frequency here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
D = 2.38 m
Explanation:
This exercise is a diffraction problem where we must be able to separate the license plate numbers, so we must use a criterion to know when two light sources are separated, let's use the Rayleigh criterion, according to this criterion two light sources are separated if The maximum diffraction of a point coincides with the first minimum of the second point, so we can use the diffraction equation for a slit
a sin θ = m λ
Where the first minimum occurs for m = 1, as in these experiments the angle is very small, we can approximate the sine to the angle
θ = λ / a
Also when we use a circular aperture instead of slits, we must use polar coordinates, which introduce a numerical constant
θ = 1.22 λ / D
Where D is the circular tightness
Let's apply this equation to our case
D = 1.22 λ / θ
To calculate the angles let's use trigonometry
tan θ = y / x
θ = tan⁻¹ y / x
θ = tan⁻¹ (4.30 10⁻² / 140 10³)
θ = tan⁻¹ (3.07 10⁻⁷)
θ = 3.07 10⁻⁷ rad
Let's calculate
D = 1.22 600 10⁻⁹ / 3.07 10⁻⁷
D = 2.38 m
Solar system is the gravitationally bound system that consists of the sun and the objects that orbit around it directly or indirectly. These objects includes the planets which orbit the sun directly an other small objects such as meteoroids, asteroids, satellites of the planets and numerous comets. The sun makes up most of the solar system' mass.
Answer:
equation of motion for Bill is

equation of motion for Ted is

Explanation:
Taking downward position positive and upward position negative
g = 9.8 m/s^2
equation of motion for Bill is




equation of motion for Ted is






Answer:
The situation where a seafloor plate slides under a continental plate during subduction is best described by convergent plate boundary.
Explanation:
The earth’s crust is broken down into tectonic plates that can move independently. They can interact in three different ways: converge (move toward one another), diverge (move away from one another) or transform (slide past one another). The three kinds of plate margins (boundaries where plates meet) are oceanic-oceanic, continental-continental, and continental-oceanic.
The regions where the plates are moving towards one another are known as convergent plate boundaries. During the convergence of continental and oceanic plates, the more-dense oceanic plate sinks below the less-dense continental plate and the oceanic plate is forced down further into the mantle. This is known as subduction. When the plate enters the mantle, the inside pressure breaks the rock. The broken rocks begins to melt from the heat due to the friction and as a result magma is formed. This magma rises toward the surface by breaking through the crust and forms a chain of volcanoes known as a volcanic arc such as the Cascade Mountains of North America and the Andes Mountains of South America.
During the convergence of two oceanic plates, one of the plates sinks underneath the other and forms an ocean trench (deep depression). The plate that sinks further down into the mantle starts to melt and as a result magma rises toward the surface and forms a chain of volcanic islands behind the ocean trench.
During the convergence of two continental plates, they buckle and compress to form complex mountains ranges of great height such as the Himalayas.