Answer:
Half
Explanation:
You only have to exert a force equal to half the weight of the load to lift it.
Answer:
The tension force has a magnitude of 490 N, and acts vertically upward
Explanation:
The complete question is:
A 50kg chandelier hangs from a ceiling suspended by a cable. What is the Tension (magnitude and direction of the force) in the cable?
ANS:
Tension is the force applied axially by rope, chain, cable, rod, etc, as a reaction force. The direction of tension is always towards the support. Since, the support here, is ceiling.
Therefore, the direction of tension force will be <u>vertically upward</u><u>.</u>
Since the chandelier is hanging stationary, without any motion. Thus, there must not be any unbalanced force applied on it.
Hence, the tension force must be equal to the weight of chandelier.
Tension Force = Weight of Chandelier
T = W = mg
T = (50 kg)(9.8 m/s²)
<u>T = 490 N</u>
<u>Thus, the tension force has a magnitude of 490 N, and acts vertically upward</u>
Answer:
2.1 s
Explanation:
The motion of the ball is a projectile motion. We know that the horizontal range of the ball is

And that the initial speed of the ball is

at an angle of

So, the horizontal speed of the ball (which is constant during the entire motion) is

And since the horizontal range is 50 m, the time taken for the ball to cover this distance was

which is the time the ball spent in air.