Behavior has at least six dimensions, which are: frequency, duration, latency, topography, locus, and force. Since the coach is recording how long it takes, the track coach is recording the duration behavior because duration is a synonym for time. Duration is your answer.
Answer:
The toy must calculate the person's speed/velocity
Explanation:
Since the school toy given to Henry can be used to tell how fast someone is moving, the toy must be able to calculate the person's speed/velocity using the <u>average distance</u> covered by the person divided by <u>time taken</u> to cover the distance; average distance ÷ time taken.
The toy must be able to determine the parameters (average distance and time taken) in order to be able to calculate the person's speed/velocity
Assuming motion is on a straight path, the result of two positive components of a vector would also be a positive value since both are having positive signs and directions. The direction would be the same with the motion as well. Hope this answers the question. Have a nice day.
Answer:
Explanation:
Given that,
Mass of the thin hoop
M = 2kg
Radius of the hoop
R = 0.6m
Moment of inertial of a hoop is
I = MR²
I = 2 × 0.6²
I = 0.72 kgm²
Period of a physical pendulum of small amplitude is given by
T = 2π √(I / Mgd)
Where,
T is the period in seconds
I is the moment of inertia in kgm²
I = 0.72 kgm²
M is the mass of the hoop
M = 2kg
g is the acceleration due to gravity
g = 9.8m/s²
d is the distance from rotational axis to center of of gravity
Therefore, d = r = 0.6m
Then, applying the formula
T = 2π √ (I / MgR)
T = 2π √ (0.72 / (2 × 9.8× 0.6)
T = 2π √ ( 0.72 / 11.76)
T = 2π √0.06122
T = 2π × 0.2474
T = 1.5547 seconds
T ≈ 1.55 seconds to 2d•p
Then, the period of oscillation is 1.55seconds
Answer:
0.01606 Newtons
Explanation:
r = Distance between the asteroid and Sally = 17000000 m
m₁ = Mass of the asteroid = 8.7× 10²⁰ kg
m₂ = Mass of Sally = 80 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
From Newton's Universal law of gravity
The force Sally experiences is 0.01606 Newtons