Answer:
a)
b) ![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
c)
Step-by-step explanation:
1) Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
2) Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Part a
Part b
![P(X> 2)=1-P(X\leq 2)=1-[P(X=0)+P(X=1)+P(X=2)]](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D)
![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
Part c
Answer:
Step-by-step explanation:
8. 7.5 Goes up by 2.5.
9. 7.3 Goes down by 2.1
10. 116/3
(-4)-4 could be some integers to subtract and get -8
I don't really know how to explain it to you but what I can tell you is that in 1 centigram there are 10 milligrams.
W & U or it could be y and x as in the x and y axis