Answer:
W = 12.96 J
Explanation:
The force acting in the direction of motion of the sand paper is the frictional force. So, we first calculate the frictional force:
F = μR
where,
F = Friction Force = ?
μ = 0.92
R = Normal Force = 2.6 N
Therefore,
F = (0.92)(2.6 N)
F = 2.4 N
Now, the displacement is given as:
d = (0.12 m)(45)
d = 5.4 m
So, the work done will be:
W = F d
W = (2.4 N)(5.4 m)
<u>W = 12.96 J</u>
Answer:
0.012 J
Explanation:
We are given:
q = 0.0080C
Potential difference = 1.5V
W=qV
Substituting the values into the equation:
W=0.0080*1.5= 0.012J
Answer:
The wavelength is 0.14 m
Explanation:
Given that,
Frequency = 2450 Hz
Speed of sound = 343 m/s
We need to calculate the wavelength
Using formula of wavelength

Where, v = speed of sound
f = frequency
Put the value into the formula



Hence, The wavelength is 0.14 m
Answer:
the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude
Explanation:
In this hypothetical system the electric force is of type
F =
in this case the force decays to zero much faster,
if we call Fo the force of Coulomb's law
F₀ = 
assuming the constant k is the same
the relationship between the two forces is
F / F₀ = 1 / r
F = F₀ / r
when analyzing this expression the force decays much faster to zero.
In an electric conductor, charges of the same sign may not feel any repulsive force from other charges that are at a medium distance, so there is a probability that some charges are distributed in the volume of the material, this does not happen with coulomb's law
Consequently, the static charge is not always distributed on the surface of the conductor, there are also charges in the volume but of lesser magnitude
Answer:
Option (1), option (4) and option (5)
Explanation:
The main observations of Ernest Rutherford's experiment are given below:
1. most of the positively charged particles pass straight, it means there is an empty space in the atom.
2. Very few positively charged particles retraces their path.
So,
The positively charged particles were deflected because like charges repel, that means they are deflected by protons.
Almost all the positively charge concentrate in a very small part which is called nucleus.