5 times that of initial pressure i.e 1625 kpa
Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1
F = ma, where m = mass in kg, a = acceleration in m/s², F = Force in Newton
F = 1 * 2
F = 2 N
Force needed is 2 Newtons.
Answer:
Higher mass or higher speed
Explanation:
Higher mass will require more force
F= ma if m goes up F goes up to stop in the same distance
Answer:
the work done by the motor is 531,45 Joules
Explanation:
Using a sketch of the possible conditions, we need to find the distance that the block was moved, in order to find the work done by the electrical motor.
The sketch could be seen in the attached image.