Answer:
Newton's third law of motion states that every action has an equal and opposite reaction. This indicates that forces always act in pairs. Reaction forces are equal and opposite, but they are not balanced forces because they act on different objects so they don't cancel each other out.
Answer:
2954.6 N/C, 46.36 degree from positive axis
Explanation:
E1 = 1300 N/C, θ1 = 35 degree
E2 = 1700 N/C, θ2 = 55 degree
Now write the electric fields in vector form
E1 = 1300 ( Cos 35 i + Sin 35 j) = 1064.9 i + 745.6 j
E2 = 1700 ( Cos 55 i + Sin 55 j) = 975.08 i + 1392.6 j
Resultant electric field
E = E1 + E2
E = 1064.9 i + 745.6 j + 975.08 i + 1392.6 j
E = 2039.08 i + 2138.2 j
Magnitude of E
E = sqrt (2039.08^2 + 2138.2^2)
E = 2954.6 N/C
Let it makes an angle Φ from X axis
tan Φ = 2138.2 / 2039.08 = 1.049
Φ = 46.36 degree from positive X axis.
The choices are confusing. Air, oil, and alcohol are fluids at any reasonable temperature. Dry cement is not.
Answer:
A. Kindly find attached free body diagram for your reference (smiles I guess I will make a terrible artist)
B. The collision is inelastic because both the husband and the wife moved together with same velocity as he grabs her on the waist
C. The general equation for conservation of momentum in terms of m 1, v 1, m 2, v 2, and final velocity vf
Say mass of husband is m1
Mass of the wife is m2
Velocity of the husband is v1
Velocity of the wife is v2
According to the conservation of momentum principle momentum before impact m1v1+m2v2 =momentum after impact Common velocity after impact (m1+m2)vf
The momentum equation is
m1v1+m2v2= (m1+m2)vf
D. To solve for vf we need to make it subject of formula
vf= {(m1v1) +(m2v2)}/(m1+m2)
E. Substituting our given data
vf=
{(1570*58)+(2550*54)}/(1570+2558)
vf=91060+137700/4120
vf=228760/4120
vf=55.52m/s
Their speed after collision is 55.52m/s
Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation: