the reagents necessary to convert alcohol to ketone which involves oxidation of alcohols.
<h3>
What is oxidation of alcohols?</h3>
- Alcohol oxidation is a significant organic chemistry process. Secondary alcohols can be oxidized to produce ketones, while primary alcohols can be oxidized to produce aldehydes and carboxylic acids.
- In contrast, tertiary alcohols cannot be oxidized without the C-C bonds in the molecule being broken.
- In order to cause primary alcohols to oxidize into aldehydes
- (dichromate)
- /pyridine (Collins reagent)
- Chromium pyridinium compound (PCC)
- Dichromate of pyridinium (PDC, Cornforth reagent)
- Periodinane by Dess-Martin
- Oxalyl chloride with dimethylsulfoxide (DMSO) for Swern
- oxidation of secondary alcohols to ketones
- (dichromate)
- /pyridine (Collins reagent)
- Chromium pyridinium compound (PCC)
- Dichromate of pyridinium (PDC, Cornforth reagent)
- Periodinane by Dess-Martin
- Oxalyl chloride and dimethyl sulfoxide (DMSO) (Swern oxidation)
- /acetone (Jones oxidation)
- Acetone with aluminum isopropoxide (Oppenauer oxidation)
To learn more about oxidation of alcohols with the given link
brainly.com/question/7207863
#SPJ4
<u>Question:</u>
Identify the reagents necessary to achieve each of the following transformations
False
Fact: Mammals and plants belong to the same domain, the Eukarya domain.
Evidence :All the organisms that possess a eukaryotic cell, plants, animals, protists, and fungi are in the Eukarya domain.
Answer:
3750 cm.
Explanation:
You multiply the three side measurements to find the volume.
25cm·10cm·15cm
375cm·10cm
3750 cm.
<em><u>Hope this helps!</u></em>
Answer:
Herbivores only eat plants . Remember HERBS are PLANTS.
Carnivores only eat meat. Remember CARNE = MEAT in Spanish.
Omnivores eat MEAT & PLANTS.
Explanation:
Differences are what they eat, similarities omnivores eat both.
Answer: 2NOBr(g) ⇌ 2NO(g) + Br2(g)
Explanation: For volume changes in equillibrium, the following are to be taken into consideration:
- Volume changes have no effect on equillibrium system that contains solid or aqueous solutions.
- An increase in volume of an equilibrium system will shift to favor the direction that produces more moles of gas.
- A decrease in volume of an equilibrium system will shift to favor the direction that produces less moles of gas.
- Volume changes will have no effect on the equillibrium system if there is an equal number of moles on both sides of the reaction.
2NOBr(g) ⇌ 2NO(g) + Br2(g) is the equillibrium system because there are more moles of products,therefore an increase in the volume of the reaction will shift to the right and produce more moles of products. Also both reactants and products exist in the gaseous state and does not have equal number of moles.