Answer:
<em><u>1)A)</u></em>
<em><u>1)A)2)A)</u></em>
<h3><em><u>Hope it helps you </u></em><em><u>♡</u></em><em><u>♡</u></em></h3>
Answer:
Electrical force, F = 90 N
Explanation:
It is given that,
Charge on sphere 1, 
Charge on sphere 2, 
Distance between two spheres, d = 6 cm = 0.06 m
Let F is the electrical force between them. It is given by the formula of electric force which is directly proportional to the product of charges and inversely proportional to the square of distance between them such that,


F = 90 N
So, the electrical force between them is 90 N. Hence, this is the required solution.
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers
Answer:
Explanation:
Let the vertical height by which it descends be h . Let it acquire velocity of v .
1/2 mv² = mgh
v² = 2gh
As it leaves the surface of sphere , reaction force of surface R = 0 , so
centripetal force = mg cosθ where θ is the angular displacement from the vertex .
mv² / r = mg cosθ
(m/r )x 2gh = mg cosθ
2h / r = cosθ
cosθ = (r-h) / r
2h / r = r-h / r
2h = r-h
3h = r
h = r / 3
Answer:
Length is the unit of metre