1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
2 years ago
8

FIRST ANSWER GETS BRAINLIST:

Physics
2 answers:
bezimeni [28]2 years ago
8 0
Object A and Object B...
Natalka [10]2 years ago
3 0

Answer:

Object A but not Object B

You might be interested in
What’s The Answer, To The Question In The Photo
Sedbober [7]

Answer:

The correct answer is the third option: The kinetic energy of the water molecules decreases.

Explanation:

Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.

Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.

<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.

4 0
3 years ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
Awave has a period of 1. What is its frequency?
Andrei [34K]

Answer:

Frequency, f = 1 unit

Explanation:

It is given that,

Period of the wave, T = 1 unit

We need to find the frequency of the wave. There exist an inverse relationship between period and the frequency of the wave. It is given by :

T=\dfrac{1}{f}

Or

f=\dfrac{1}{T}

f=\dfrac{1}{1\ units}

f = 1 unit

So, the frequency of the wave is 1 unit. Hence, this is the required solution.

4 0
3 years ago
How many of each component are shown in the diagram
aleksley [76]

Answer:

One battery, two resistors, two switches, three light bulbs

Explanation:

Each component is indicated with the following symbols:

- Battery: it is the one on the right, consisting of two longer lines and two shorter lines. It is the device that provides the electromotive force to the circuit

- Resistors: they are the devices on the bottom line, consisting of zig-zag lines. Resistors are pieces of circuit that resist to the flow of current in the circuit.

- Switches: they are labelled with a line with two dots at both ends. They can be opened/closed in order to stop/allow the flow of current in the circuit.

- Light bulbs: they are labelled with a circle filled with a X.

3 0
2 years ago
Read 2 more answers
Based on the type of medium, what can you assume about the speed of sound in glass?
adelina 88 [10]

Answer:

"It will be more than the speed of sound waves in air at 20*C and water at 20*C."

Explanation:

Speed of sound in a medium depends upon the density and elasticity of the medium.

If the elasticity of a medium is greater and the density of that medium is lower, sound will travel faster. Although density is also a factor but the major factor is Elasticity.

Hence, sound travel faster in solids than in liquids and even slower in gases due to elasticity difference.

                        Speed of sound = V = \sqrt{\frac{Elasticity}{Density} }

That is why the speed of sound in glass will be more than the speed of sound waves in air at 20*C and water at 20*C.

5 0
3 years ago
Other questions:
  • Which of the following statements is true about scientific inquiry? 20 points
    10·2 answers
  • What is the equation for calculating the electrical force, Fe, between two charges?
    5·1 answer
  • How can a driver best prepare to enter sharp curves on a road way
    10·1 answer
  • What do you mean by Aquatic habitat? Give 2 examples of Desert habitat
    10·1 answer
  • Why do planents revolve around the sun ?​
    9·1 answer
  • Which statements describe how a machine can help make work easier? Select two options.
    12·1 answer
  • The average distance from Earth to the Moon is 384,000 km. In the late 1960s, astronauts reached the Moon in about 3 days. How f
    12·1 answer
  • What's the difference between a direct relationship and a positive one?
    13·1 answer
  • Which of toby's answers is a correct description of what happens when a 1-kg cart traveling at 1 m/s collides inelastically with
    6·1 answer
  • A boulder of mass 4 kg rolls over a cliff and reaches the beach below with a velocity of 20 metres per second minus 1.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!