Answer:
The number of turns of the solenoid is 3536 turns
Explanation:
Given;
magnetic field of the solenoid, B = 0.1 T
current in the solenoid, I = 1.8 A
length of the solenoid, L = 8cm = 0.08m
The magnetic field near the center of the solenoid is given by;
B = μ₀nI
Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
n is number of turns per length
I is the current in the coil
The number of turns per length is calculated as;
n = B / μ₀I
n = (0.1 ) / (4π x 10⁻⁷ x 1.8)
n = 44203.95 turns/m
The number of turns is calculated as;
N = nL
N = (44203.95)(0.08)
N = 3536 turns
Therefore, the number of turns of the solenoid is 3536 turns
Ranking Earthquake Intensity
Magnitude Average number per year Modified Mercalli Intensity
2.0 – 2.9 >1 million I
3.0 – 3.9 about 100,000 II – III
4.0 – 4.9 about 10,000 IV – V
5.0 – 5.9 about 1,000 VI – VII
Explanation:
hope it helps
Mark as brainliest
and follow me for a follow back
Answer:
15.6m/s
Explanation:
V1=
because the derivate of the position is the velocity
V1=12t+3
V2=20+
-8t because the integral of the acceleration is the velocity
V2=
V1=V2 to see when the velocities of particles match
12t+3=20-4t^2
4t^2+12t-17=0 we resolve this with 
and we take the positif root
t=1.05 sec
if we evaluate the velocity (V1 or V2) the result is 15.6m/s
Answer:
0.853 m/s
Explanation:
Total energy stored in the spring = Total kinetic energy of the masses.
1/2ke² = 1/2m'v².................... Equation 1
Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.
make v the subject of the equation,
v = e[√(k/m')].................... Equation 2
Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.
Substitute into equation 2
v = 0.39[√(1.75/0.8)
v = 0.39[2.1875]
v = 0.853 m/s
Hence the speed of each mass = 0.853 m/s
Find the answer in the attachment