They are called Consumers I believe hope that helps ☺
B) over production. Frogs lay thousands of eggs because some die, therefor, the frog needs to produce more.
Answer:
sorry po d po Makita Ng maayo
order po kayo Milktea
Answer:
Ok so an updated overview of what has been learned regarding abiotic effects on different entomopathogen groups during the past 30 years. It focuses on entomopathogens that have emonstrated potential roles in microbial control. Abiotic environmental factors have diverse effects on entomopathogen survival, efficacy, and dispersal in the ecosystem. Extreme temperatures, desiccation, and UV radiation have the most detrimental effects on pathogen survival despite the existence of durable resting stages for most groups. Few field studies have investigated the influence of temperature on the severity and rate of transmission of viral disease. Since low temperatures do not affect the lethality of most baculoviruses, these viruses could be applied for area-wide management to reduce pest populations early or before the start of the growing season, as demonstrated against Helicoverpa zea and Heliothis virescens.
Pathogens of invertebrates, along with their hosts, inhabit all niches throughout the world, in ecosystems ranging from sub‐arctic to arid, temperate, and tropical. The abiotic factors that affect pathogen survival, reproduction, distribution and pathogenic effects on hosts consist of environmental elements such as temperature, moisture, and ultraviolet (UV) radiation, habitat characteristics including soil texture, soil type, and pH, as well as chemical inputs such as fertilizers, pesticides, and pollutants. In the present chapter, we will provide an updated overview of what has been learned regardingabiotic effects on different entomopathogen groups during the past 30 years. We focus our discussion on entomopathogens that have demonstrated potential roles in microbial control. The abiotic factors discussed complement other influences (biological and genetic, which are described in other chapters) that dictate the prevalence and activity of pathogenic organisms.
Answer:
DNP produces the loss of the proton gradient (i.e., the energy of the proton gradient is dissipated in the form of heat instead to produce ATP)
Explanation:
2,4-Dinitrophenol (DNP) acts to shuttle H+ ions across cellular membranes, bypassing the ATP synthase used by mitochondria to generate ATP during cellular respiration. Since DNP is able to bypass ATP synthase, this compound uncouples the phosphorylation of ADP by the ATP synthase from the process of oxidation (i.e., transport of electrons). For example, in muscle cells, DNP may be used to shuttle calcium ions (Ca +) from mitochondrial stores, and free intracellular Ca+ ions are evidenced to produce muscle contraction.