1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
3 years ago
8

How many times bigger is the 45,776 than 45.776

Mathematics
1 answer:
sweet [91]3 years ago
7 0

Answer:

54

Step-by-step explanation:

You might be interested in
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
What method most efficient to use to solve x^2+4x+3=0
Alik [6]
My recommendation would be to factor..
x² + 4x + 3 = 0 factor the left side into two binomials
(x + 3)(x + 1) = 0 set each of these binomials equal to zero and solve

x + 3 = 0 Implies x = -3
x + 1 = 0 implies x = -1
6 0
3 years ago
HURRY!!!
SCORPION-xisa [38]

The answer is D. p=4

4 0
2 years ago
Read 2 more answers
Question 1<br> Simplify<br> √-100?
Hitman42 [59]

Answer:

√100 = 10

so √-100 =

i√10

6 0
3 years ago
3 + (2 + 8)2 ÷ 4 × 1 over 2 to the power of 4
Andreyy89

Answer:

Thus, the value of expression  is .

Step-by-step explanation:

Given : 3 + (2 + 8)power 2 ÷ 4 × 1 over 2 to the power of 4

Mathematically written as

We apply BODMAS,

Where ,

B stands for brackets

O stands for order

D stands for division

M stands for multiplication

A stand for addition

S stands for subtraction.

Consider the given expression,

Using BODMAS rule, solving for brackets first,

Thus, the value of expression  is

7 0
3 years ago
Other questions:
  • Suppose that (x1, y1) and (x2, y2) are two points on a linear function. Write the formula to find the function’s rate of change
    15·1 answer
  • There are 90 girls and 60 boys in the sixth grade at a middle school. Of these students, 9 girls and 3 boys write left-handed. W
    8·1 answer
  • Write this number in standard form.<br><br><br> 300 + 20 + 7 + .04 + .007
    8·2 answers
  • At the store 6 pounds of bananas cost $1.95. Enter the amount of 18 bananas would cost.
    14·1 answer
  • Logan borrowed $24,318.79 and will have to repay a total of $27,174.25. How much interest will he pay?
    15·1 answer
  • Which ordered pair could be removed from the graph to create a set of ordered pairs that represents a function?
    15·1 answer
  • Use order of operations: 3^2*5-(6+3)^2
    8·2 answers
  • Ron has 22 coins with a total value of $ 1.85. The coins are nickels (5 cents) and dimes (10 cents). How many of each coin does
    14·2 answers
  • (50 x 40 / 4 + 20) + (50 / 2 + 25) =
    14·1 answer
  • Can someone help me please
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!