Hello!
The mass number in isotope notation is denoted A, the atomic number is denoted as Z, and the element is denoted as X.
In the given isotope, the mass of the isotope is 212 amu, and the atomic number is 82.
We know that the number of electrons, and protons are equal to the atomic number. Therefore, there are 82 protons. Also, to find the number of neutrons, we subtract the atomic number from the atomic mass.
212 - 82 = 130 neutrons
<u>Final answers</u>:
- Atomic Number: 82
- Mass number: 212
- Number of Protons: 82
- Number of Neutrons: 130
NaOH reacts with CH3COOH in 1:1 molar ratio to produce CH3COONa
NaOH + CH3COOH → CH3COONa + H2O
Mol CH3COOH in 52.0mL of 0.35M solution = 52.0/1000*0.35 = 0.0182 mol CH3COOH
Mol NaOH in 19.0mL of 0.40M solution = 19.0/1000*0.40 = 0.0076 mol NaOH
These will react to produce 0.0076 mol CH3COONa and there will be 0.0182 - 0.0076 = 0.0106 mol CH3COOH remaining in solution unreacted . Total volume of solution = 52.0+19.0 = 71mL or 0.071L
Molarity of CH3COOH = 0.0106/0.071 = 0.1493M
CH3COONa = 0.0076 / 0.071 = 0.1070M
pKa acetic acid = - log Ka = -log 1.8*10^-5 = 4.74.
pH using Henderson - Hasselbalch equation:
pH = pKa + log ([salt]/[acid])
pH = 4.74 + log ( 0.1070/0.1493)
pH = 4.74 + log 0.717
pH = 4.74 + (-0.14)
pH = 4.60.
Answer:
Both of the studies said that the mass of the atom is centered in the nucleus, which is positive, and there are electrons (negative particles) orbiting it. So, Rutheford and Nagaoka discovered that the atom can be divisible and it has an empty space.
But, in the model of Nagaoka, the nucleus was huge, and for Rutherford, the nucleus was really small, and the mass was concentrated. By his experiment with the gold sheets, the theory was appropriated. That's why Rutherford is credited with the discovery of the nucleus. Nagaoka was incorrect in his suppositions.