Answer:
Ratio is 1:1
Explanation:
I do not see any coefficients infront of the reactants and the products, therefore, we can automatically assume that every reactant and product is 1 mole. Don't get confused by the 4 off the O. It just means that 1 mole of sulfate has 1 zinc and 4 oxygens.
The changes that are common between sauce burning on a stove, and jewelry tarnishing, which is a chemical change.
How to define chemical and physical changes?
Chemical Change-
Any alteration that produces new chemical substances with distinct properties is considered a chemical change. Chemical reactions involve the rearrangement and recombination of elements and compounds to create new substances. Examples of chemical changes are listed below:
- Burning
- Digestion
- chemicals changing colors
- Tarnishing
- compost rotting
Physical Change-
A substance is not destroyed or transformed into something new by physical changes. A substance can undergo physical changes that alter its shape, size, or phase. The constituents of an element or compound do not change during a physical change. Examples of physical changes are listed below:
- Boiling water
- Chopping, Cutting, Carving
- Evaporation
- Freezing, Melting, Condensation
To know more about chemical and physical changes, visit the given link:
brainly.com/question/20628019
#SPJ4
Answer:
water evaporates from the ocean into atmosphere. water vapour condenses to form clouds. clouds produce rain. rainwater needed for plant growth.
Explanation:
Answer:
The system is not in equilibrium and will evolve left to right to reach equilibrium.
Explanation:
The reaction quotient Qc is defined for a generic reaction:
aA + bB → cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where the concentrations are not those of equilibrium, but other given concentrations
Chemical Equilibrium is the state in which the direct and indirect reaction have the same speed and is represented by a constant Kc, which for a generic reaction as shown above, is defined:
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where the concentrations are those of equilibrium.
This constant is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients divided by the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients.
Comparing Qc with Kc allows to find out the status and evolution of the system:
- If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium.
- If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium. In this case the direct reaction predominates and there will be more product present than what is obtained at equilibrium. Therefore, this product is used to promote the reverse reaction and reach equilibrium. The system will then evolve to the left to increase the reagent concentration.
- If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium. The concentration of the reagents is higher than it would be at equilibrium, so the direct reaction predominates. Thus, the system will evolve to the right to increase the concentration of products.
In this case:
![Q=\frac{[So_{3}] ^{2} }{[SO_{2} ]^{2}* [O_{2}] }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BSo_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BSO_%7B2%7D%20%5D%5E%7B2%7D%2A%20%5BO_%7B2%7D%5D%20%7D)

Q=100,000
100,000 < 4,300,000 (4.3*10⁶)
Q < Kc
<u><em>
The system is not in equilibrium and will evolve left to right to reach equilibrium.</em></u>
The mass decay rate is of the form

where
m₀ = 3000 g,the initial mass
k = the decay constant
t = time, years.
Because the half-life is 30 years, therefore

After 60 years, the mass remaining is

Answer: 750 g