Answer:
300 cos 30 = 40 a + 40 * .2 * 10
Total force = mass * acceleration + frictional force
260 = 40 a + 80
a = 180 / 40 = 4.5 m/s^2
Check:
15 a + 15 * 10 * .2 = T acceleration of 15 kg block (assuming a = 4.5)
T = 15 (4.5) + 30 = 97.5 force required to accelerate 15 kg block
260 - 97.5 = 162.5 net force on 25 kg block
162.5 = 4.5 (25) + 25 * 10 * .2
162.5 = 112.5 + 50 = 162.5
4.5 m/s^2 checks out as correct
Answer:
Because it is being stopped by another person
Answer:
189 m/s
Explanation:
The pilot will experience weightlessness when the centrifugal force, F equals his weight, W.
So, F = W
mv²/r = mg
v² = gr
v = √gr where v = velocity, g = acceleration due to gravity = 9.8 m/s² and r = radius of loop = 3.63 × 10³ m
So, v = √gr
v = √(9.8 m/s² × 3.63 × 10³ m)
v = √(35.574 × 10³ m²/s²)
v = √(3.5574 × 10⁴ m²/s²)
v = 1.89 × 10² m/s
v = 189 m/s
Answer:
the answer is
Explanation:
constant acceleration
because when the object's velocity is changing then the object is accelerating or decelerating
as acceleration describe changing of velocity so the answer is constant acceleration
Acceleration is defined as the rate of change of velocity.
Acceleration = (Change in velocity) / time taken
Acceleration = (Final velocity - initial velocity) / time
As the object velocity changes by the same amount in each second, it means the acceleration is constant.
Hope I can help u
Answer:
t=2.10 s
u= 47.40 m/s
Explanation:
given that
h= 21.8 m
x= 101 m
g=9.8 m/s²
Lets take horizontal speed of ball = u m/s
The vertical speed of the car at initial condition is zero ( v= 0).
We know that

v= 0 m/s

now by putting the values
21.8 = 1/2 x 9.8 x t²
t=2.10 s
This is time when ball was in motion.
Now in horizontal direction
x = u .t
101 = u x 2.1
u= 47.40 m/s