Answer:
1)0.325
2)
Explanation:
<u>Given:</u>
The angle that falling raindrops make with the vertical=
Let
be the velocity of the raindrops and
be the velocity of the bus.
1)

2)Speed of the raindrops

Answer:
correct option is d) 7.0 x 10^-7 N
Explanation:
given data
distance = 175 picometers = 1.75 ×
m
to find out
electrical force
solution
we know atomic no of uranium is 92
and charge on electron is = 1.6 ×
C
and electrical force is express as
electrical force =
.............1
put here value we get
electrical force = 
electrical force = 6.921 ×
N
so correct option is d) 7.0 x 10^-7 N
Continental deflections, the Coriolis effect and global winds all affect surface ocean currents.
Answer:
V = 20 m/s
Explanation:
Given the following data;
Mass = 80kg
Kinetic energy = 16,000 joules
To find the velocity;
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Substituting into the formula, we have;
16000 = ½*80*V²
16000 = 40V²
V² = 16000/40
V² = 400
Taking the square root of both sides, we have;
V = 20 m/s
The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

The distance from the center of the square to one of the corners is 

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.
2) 

![V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between energies. This is the work-energy theorem. So,[tex]W = U_b - U_a](https://tex.z-dn.net/?f=V_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%5Csqrt2%7D%20%2B%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B-2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%7D%5C%5CV_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%7D%20%28%5Cfrac%7B1%7D%7B%5Csqrt2%7D-1%29%5C%5CV_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%20%284%5Ctimes%2010%5E%7B-5%7D%29%28-0.29%29%5C%5CV_b%20%3D%20%28-%5Cfrac%7B2.9%5Ctimes10%5E%7B-6%7D%7D%7B%5Cpi%5Cepsilon_0%7D%29%5Btex%5D%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E3%29%20The%20work%20done%20on%20q3%20by%20q1%20and%20q2%20is%20equal%20to%20the%20difference%20between%20%20energies.%20This%20is%20the%20work-energy%20theorem.%20So%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%20U_b%20-%20U_a)

