Answer:
No one is right
Explanation:
John Case:
The function
is defined between -1 and 1, So it is not possible obtain a value
greater.
In addition, if you move the function cosine a T Value, and T is the Period, the function take the same value due to the cosine is a periodic function.
Larry case:
Is you have
, the domain of this is [0,2].
it is equivalent to adding 1 to the domain of the
, and its mean that the function
, in general, is not greater than
.
Answer:
DS = 13865.7[J/K]
Explanation:
We can calculate the energy of the rock, like the potential energy relative to the lake level. Which can be calculated by means of the following expression of the potential energy:
![E_{p}=m*g*h\\\\where:\\m = mass = 2000[kg]\\h = elevation = 200 [m]\\g = gravity = 9.81[m/s^2]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%202000%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%20200%20%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D)
Therefore:
![E_{p}=2000*9.81*200\\E_{p}=3924000 [J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2000%2A9.81%2A200%5C%5CE_%7Bp%7D%3D3924000%20%5BJ%5D%5C%5C)
This energy is transformed into thermal energy.
we shall remember that isothermal heat transfer processes are internally reversible, so the entropy change of a system during one of these processes can be determined, by the following expression.
![DS=\frac{Q}{T}\\ where:\\DS = entropy change [J/K]\\Q = Heat transfer [J]\\T = temperature [K]](https://tex.z-dn.net/?f=DS%3D%5Cfrac%7BQ%7D%7BT%7D%5C%5C%20where%3A%5C%5CDS%20%3D%20entropy%20change%20%5BJ%2FK%5D%5C%5CQ%20%3D%20Heat%20transfer%20%5BJ%5D%5C%5CT%20%3D%20temperature%20%5BK%5D)
T = 5 + 278 = 283[K]
DS = 3924000 / 283
DS = 13865.7[J/K]
Few moons
I just took the test and got it right
Answer:
Explanation:La ecuación de Van der Waals es una ecuación de estado de un fluido compuesto de partículas con un tamaño no despreciable y con fuerzas intermoleculares, como las fuerzas de Van der Waals. La ecuación, cuyo origen se remonta a 1873, debe su nombre a Johannes van der Waals, quien recibió el premio Nobel en 1910 por su trabajo en la ecuación de estado para gases y líquidos, la cual está basada en una modificación de la ley de los gases ideales para que se aproxime de manera más precisa al comportamiento de los gases reales al tener en cuenta su tamaño no nulo y la atracción entre sus partículas.