Answer:
Explanation:
To find out the angular velocity of merry-go-round after person jumps on it , we shall apply law of conservation of ANGULAR momentum
I₁ ω₁ + I₂ ω₂ = ( I₁ + I₂ ) ω
I₁ is moment of inertia of disk , I₂ moment of inertia of running person , I is the moment of inertia of disk -man system , ω₁ and ω₂ are angular velocity of disc and man .
I₁ = 1/2 mr²
= .5 x 175 x 2.13²
= 396.97 kgm²
I₂ = m r²
= 55.4 x 2.13²
= 251.34 mgm²
ω₁ = .651 rev /s
= .651 x 2π rad /s
ω₂ = tangential velocity of man / radius of disc
= 3.51 / 2.13
= 1.65 rad/s
I₁ ω₁ + I₂ ω₂ = ( I₁ + I₂ ) ω
396.97 x .651 x 2π + 251.34 x 1.65 = ( 396.97 + 251.34 ) ω
ω = 3.14 rad /s
kinetic energy = 1/2 I ω²
= 3196 J
Answer: a
Explanation: because the answer is 1.4444444 and that's the closest
Answer:
ggy h Jr scythe fund the CT h hytgy6fhhj
Answer:
Because electromagnetic waves can travel through empty space
Explanation:
The energy that is emitted from the sun is transferred to the earth in the form of radioactive waves. These waves are originated due to the vibration between the electric and magnetic fields. As this energy reaches the earth, it warms the earth's atmosphere, resulting in the transfer of heat energy in three possible ways namely the conduction, convection, and radiation.
This electromagnetic waves do not require any matter for the transmission of energy, and can easily travel in empty space from the core of the sun to the earth and other nearby planets. Whereas other types of waves cannot travel in space, so it is transferred in the form of electromagnetic waves only.
find acceleration force divided by Mass
a=f/m