Parking lots with roads and concrete reduce infiltration. Infiltration is the process by which water penetrates the soil. Reducing the amount of water that enters the soil can eventually impact groundwater levels in some areas by decreasing it over time. Paved roads lead to increased surface runoff which increases the possibility of flooding in periods of heavy rainfall. This is known as urban flooding.
Explanation:
It is given that, the position of a particle as as function of time t is given by :

Let v is the velocity of the particle. Velocity of an object is given by :

![v=\dfrac{d[(8t+9)i+(2t^2-8)j+6tk]}{dt}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7Bd%5B%288t%2B9%29i%2B%282t%5E2-8%29j%2B6tk%5D%7D%7Bdt%7D)

So, the above equation is the velocity vector.
Let a is the acceleration of the particle. Acceleration of an object is given by :

![a=\dfrac{d[8i+4tj+6k]}{dt}](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5B8i%2B4tj%2B6k%5D%7D%7Bdt%7D)

At t = 0, 

Hence, this is the required solution.
From Newton's law v^2 = u^2 + 2as where a is the acceleration and s is the distance.
But to go any further, we need to know how fast the vehicle is accelerating
From v = u +at
We have a = u/t where the final velocity v = 0
So in one minute acceleration = (35 / 60) / 60 = 0.0097 ms/2. The first
experession in bracket is the initial velocity, u, in metres per seconds.
Hence v^2 = (0.583)^2 + 2 (0.0097)(30)
v^2 = 0.3398 + 0.5826 = 0.9224
v = âš 0.9224 = 0.960m